The Myc Gene pp 201-212 | Cite as

Investigating Myc-Dependent Translational Regulation in Normal and Cancer Cells

  • John T. Cunningham
  • Michael Pourdehnad
  • Craig R. Stumpf
  • Davide Ruggero
Part of the Methods in Molecular Biology book series (MIMB, volume 1012)


There is an increasing realization that a primary role for Myc in driving cellular growth and cell cycle progression relies on Myc’s ability to increase the rate of protein synthesis. Myc induces myriad changes in both global and specific mRNA translation. Herein, we present three assays that allow researchers to measure changes in protein synthesis at the global level as well as alterations in the translation of specific mRNAs. Metabolic labeling of cells with 35S-containing methionine and cysteine is presented as a method to measure the overall rate of global protein synthesis. The bicistronic reporter assay is employed to determine levels of cap-dependent and cap-independent translation initiation in the cell. Finally, isolation of polysome-associated mRNAs followed by next-generation sequencing, microarray or quantitative real-time PCR (qRT-PCR) analysis is utilized to detect changes in the abundance of specific mRNAs that are regulated upon Myc hyperactivation. The protocols described in this chapter can be used to understand how and to what extent Myc-dependent regulation of translation influences normal cellular functions as well as tumorigenesis.

Key words

Myc Translation Protein synthesis Ribosome 



We would like to thank members of the Ruggero lab for their input and comments on this manuscript. Thank you to Kimhouy Tong for editing the manuscript. This work is supported by ACS #121364-PF-11-184-01-TBG (J.T.C.), NIH/NRSA F32CA162634 (C.R.S.), and NIH R01CA140456 (D.R.). D.R. is a Leukemia & Lymphoma Society Scholar.


  1. 1.
    Zeller KI, Zhao X, Lee CWH, Chiu KP, Yao F, Yustein JT, Ooi HS, Orlov YL, Shahab A, Yong HC, Fu Y, Weng Z, Kuznetsov VA, Sung W-K, Ruan Y, Dang CV, Wei C-L (2006) Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci USA 103:17834–17839PubMedCrossRefGoogle Scholar
  2. 2.
    Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, Cocito A, Amati B (2003) Genomic targets of the human c-Myc protein. Genes Dev 17:1115–1129PubMedCrossRefGoogle Scholar
  3. 3.
    Gomez-Roman N, Grandori C, Eisenman RN, White RJ (2003) Direct activation of RNA polymerase III transcription by c-Myc. Nature 421:290–294PubMedCrossRefGoogle Scholar
  4. 4.
    Barna M, Pusic A, Zollo O, Costa M, Kondrashov N, Rego E, Rao PH, Ruggero D (2008) Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 456:971–975PubMedCrossRefGoogle Scholar
  5. 5.
    Bywater MJ, Poortinga G, Sanij E, Hein N, Peck A, Cullinane C, Wall M, Cluse L, Drygin D, Anderes K, Huser N, Proffitt C, Bliesath J, Haddach M, Schwaebe MK, Ryckman DM, Rice WG, Schmitt C, Lowe SW, Johnstone RW, Pearson RB, McArthur GA, Hannan RD (2012) Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell 22:51–65PubMedCrossRefGoogle Scholar
  6. 6.
    Stumpf CR, Ruggero D (2011) The cancerous translation apparatus. Curr Opin Genet Dev 21(4):474–483Google Scholar
  7. 7.
    Silvera D, Formenti SC, Schneider, RJ (2010) Translational control in cancer. Nat Rev Cancer 10(4):254–266Google Scholar
  8. 8.
    Ruggero D (2009) The role of Myc-induced protein synthesis in cancer. Cancer Res 69:8839–8843PubMedCrossRefGoogle Scholar
  9. 9.
    Bloch HS, Hitchcock CR, Kremen AJ (1951) The distribution of S35 from labeled DL-methionine in mice bearing carcinoma of the breast, neoplasms of the hematopoietic system, or liver abscesses. Cancer Res 11:313–317PubMedGoogle Scholar
  10. 10.
    Schuhmacher M, Staege MS, Pajic A, Polack A, Weidle UH, Bornkamm GW, Eick D, Kohlhuber F (1999) Control of cell growth by c-Myc in the absence of cell division. Cur Biol 9(21):1255–1258Google Scholar
  11. 11.
    Iritani BM, Eisenman RN (1999) c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc Natl Acad Sci USA 96:13180–13185PubMedCrossRefGoogle Scholar
  12. 12.
    Mateyak MK, Obaya AJ, Adachi S, Sedivy JM (1997) Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ 8:1039–1048PubMedGoogle Scholar
  13. 13.
    Ji H, Wu G, Zhan X, Nolan A, Koh C, De Marzo A, Doan HM, Fan J, Cheadle C, Fallahi M, Cleveland JL, Dang CV, Zeller KI (2011) Cell-type independent MYC target genes reveal a primordial signature involved in biomass accumulation. PLoS One 6:e26057PubMedCrossRefGoogle Scholar
  14. 14.
    Muranen T, Selfors LM, Worster DT, Iwanicki MP, Song L, Morales FC, Gao S, Mills GB, Brugge JS (2012) Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells. Cancer Cell 21:227–239PubMedCrossRefGoogle Scholar
  15. 15.
    Qin X, Sarnow P (2004) Preferential translation of internal ribosome entry site-containing mRNAs during the mitotic cycle in mammalian cells. J Biol Chem 279:13721–13728PubMedCrossRefGoogle Scholar
  16. 16.
    Pyronnet S, Pradayrol L, Sonenberg N (2000) A cell cycle-dependent internal ribosome entry site. Mol Cell 5:607–616PubMedCrossRefGoogle Scholar
  17. 17.
    Hart L, Cunningham J, Datta T, Dey S, Tameire F, Lehman S, Qiu B, Zhang H, Cerniglia G, Bi M, Li Y, Gao Y, Liu H, Li C, Maity A, Thomas-Tikhonenko A, Perl A, Koong A, Fuchs S, Diehl J, Mills I, Ruggero D, Koumenis C (2012) Endoplasmic reticulum stress-mediated autophagy promotes myc-dependent transformation and tumor growth. J Clin Invest 122(12):4621–4634PubMedCrossRefGoogle Scholar
  18. 18.
    Bellodi C, Krasnykh O, Haynes N, Theodoropoulou M, Peng G, Montanaro L, Ruggero D (2010) Loss of function of the tumor suppressor DKC1 perturbs p27 translation control and contributes to pituitary tumorigenesis. Cancer Res 70:6026–6035PubMedCrossRefGoogle Scholar
  19. 19.
    Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C, Pandolfi PP (2004) The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 10:484–486PubMedCrossRefGoogle Scholar
  20. 20.
    Miluzio A, Beugnet A, Grosso S, Brina D, Mancino M, Campaner S, Amati B, de Marco A, Biffo S (2011) Impairment of cytoplasmic eIF6 activity restricts lymphomagenesis and tumor progression without affecting normal growth. Cancer Cell 19:765–775PubMedCrossRefGoogle Scholar
  21. 21.
    Pyronnet S, Dostie J, Sonenberg N (2001) Suppression of cap-dependent translation in mitosis. Genes Dev 15:2083–2093PubMedCrossRefGoogle Scholar
  22. 22.
    Yoon A, Peng G, Brandenburger Y, Zollo O, Xu W, Rego E, Ruggero D (2006) Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita. Science 312:902–906PubMedCrossRefGoogle Scholar
  23. 23.
    Mezquita P, Parghi SS, Brandvold KA, Ruddell A (2004) Myc regulates VEGF production in B cells by stimulating initiation of VEGF mRNA translation. Oncogene 24:889–901CrossRefGoogle Scholar
  24. 24.
    Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM (2012) A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485:109–113PubMedCrossRefGoogle Scholar
  25. 25.
    Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223PubMedCrossRefGoogle Scholar
  26. 26.
    Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, Shi EY, Stumpf CR, Christensen C, Bonham MJ, Wang S, Ren P, Martin M, Jessen K, Feldman ME, Weissman JS, Shokat KM, Rommel C, Ruggero D (2012) The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485:55–61PubMedCrossRefGoogle Scholar
  27. 27.
    Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS (2012) The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 7:1534–1550PubMedCrossRefGoogle Scholar
  28. 28.
    Bellodi C, Kopmar N, Ruggero D (2010) Deregulation of oncogene-induced senescence and p53 translational control in X-linked dyskeratosis congenita. EMBO J 29:1865–1876PubMedCrossRefGoogle Scholar
  29. 29.
    Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147:789–802PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • John T. Cunningham
    • 1
    • 2
  • Michael Pourdehnad
    • 3
  • Craig R. Stumpf
    • 1
    • 2
  • Davide Ruggero
    • 1
    • 2
  1. 1.School of MedicineUniversity of California San FranciscoSan FranciscoUSA
  2. 2.Department of Urology, Helen Diller Family Comprehensive Cancer CenterUniversity of California San FranciscoSan FranciscoUSA
  3. 3.Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer CenterUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations