Chemokines pp 93-127 | Cite as

A Novel Approach to Quantify G-Protein-Coupled Receptor Dimerization Equilibrium Using Bioluminescence Resonance Energy Transfer

  • Irina Kufareva
  • Bryan Stephens
  • C. Taylor Gilliland
  • Beili Wu
  • Gustavo Fenalti
  • Damon Hamel
  • Raymond C. Stevens
  • Ruben Abagyan
  • Tracy M. Handel
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1013)

Abstract

Along with other resonance energy transfer techniques, bioluminescence resonance energy transfer (BRET) has emerged as an important method for demonstrating protein–protein interactions in cells. In the field of G-protein-coupled receptors, including chemokine receptors, BRET has been widely used to investigate homo- and heterodimerization, a feature of their interactions that is emerging as integral to function and regulation. While demonstrating the existence of dimers for a given receptor proved to be fairly straightforward, quantitative comparisons of different receptors or mutants are nontrivial because of inevitable variations in the expression of receptor constructs. The uncontrollable parameters of the cellular expression machinery make amounts of transfected DNA extremely poor predictors for the expression levels of BRET donor and acceptor receptor constructs, even in relative terms. In this chapter, we show that properly accounting for receptor expression levels is critical for quantitative interpretation of BRET data. We also provide a comprehensive account of expected responses in all types of BRET experiments and propose a framework for uniform and accurate quantitative treatment of these responses. The framework allows analysis of both homodimer and heterodimer BRET data. The important caveats and obstacles for quantitative treatment are outlined, and the utility of the approach is illustrated by its application to the homodimerization of wild-type (WT) and mutant forms of the chemokine receptor CXCR4.

Key words

G-protein-coupled receptor Chemokine receptor CXCR4 Dimerization Monomer–dimer equilibrium Bioluminescence resonance energy transfer BRET titration BRET saturation 

Notes

Acknowledgements

This work was supported by the National Institute of Health PSI:Biology grants U01 GM094612 (T.M.H. and R.A.) and U54 GM094618 (R.C.S.) and by NIH grants R01 GM081763 (T.M.H.) and R01 GM071872 (R.A.). C.T.G and B.S. were supported by the Cellular and Molecular Pharmacology Training Grant T32 GM007752. D.H. was supported by NIH NRSA grant F32 GM083463. B.W. was supported by NIH grant R01 Al100604 and the grant 11JC1414800 awarded by Science and Technology Commission of Shanghai Municipality. The authors would like to thank Jeffrey Velasquez (TSRI) for help with molecular biology, Tam Trinh and Kirk Allin (TSRI) for help with the baculovirus expression, and M. Bouvier (University of Montreal) for the Rluc and YFP coding sequence containing vectors used to produce all of our BRET constructs. We also thank Pascale Charest (University of Arizona) for valuable discussions regarding the BRET assays and Goran Pljevaljcic (TSRI) for constructive comments on the manuscript.

References

  1. 1.
    Whorton MR, Bokoch MP, Rasmussen SG, Huang B, Zare RN, Kobilka B, Sunahara RK (2007) A monomeric G-protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci USA 104:7682–7687PubMedCrossRefGoogle Scholar
  2. 2.
    Bayburt TH, Leitz AJ, Xie G, Oprian DD, Sligar SG (2007) Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J Biol Chem 282:14875–14881PubMedCrossRefGoogle Scholar
  3. 3.
    Angers S, Salahpour A, Bouvier M (2002) Dimerization: an emerging concept for G-protein-coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol 42:409–435PubMedCrossRefGoogle Scholar
  4. 4.
    Springael JY, Urizar E, Parmentier M (2005) Dimerization of chemokine receptors and its functional consequences. Cytokine Growth Factor Rev 16:611–623PubMedCrossRefGoogle Scholar
  5. 5.
    Terrillon S, Bouvier M (2004) Roles of ­G-protein-coupled receptor dimerization. EMBO Rep 5:30–34PubMedCrossRefGoogle Scholar
  6. 6.
    Milligan G (2004) G-protein-coupled receptor dimerization: function and ligand pharmacology. Mol Pharmacol 66:1–7PubMedCrossRefGoogle Scholar
  7. 7.
    Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:367–377PubMedCrossRefGoogle Scholar
  8. 8.
    Benkirane M, Jin DY, Chun RF, Koup RA, Jeang KT (1997) Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5delta32. J Biol Chem 272:30603–30606PubMedCrossRefGoogle Scholar
  9. 9.
    Issafras H, Angers S, Bulenger S, Blanpain C, Parmentier M, Labbe-Jullie C, Bouvier M, Marullo S (2002) Constitutive agonist-independent CCR5 oligomerization and antibody-mediated clustering occurring at physiological levels of receptors. J Biol Chem 277:34666–34673PubMedCrossRefGoogle Scholar
  10. 10.
    Mellado M, Rodriguez-Frade JM, Vila-Coro AJ, Fernandez S, Martin de Ana A, Jones DR, Toran JL, Martinez AC (2001) Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. EMBO J 20:2497–2507PubMedCrossRefGoogle Scholar
  11. 11.
    Hernandez PA, Gorlin RJ, Lukens JN, Taniuchi S, Bohinjec J, Francois F, Klotman ME, Diaz GA (2003) Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 34:70–74PubMedCrossRefGoogle Scholar
  12. 12.
    Lagane B, Chow KY, Balabanian K, Levoye A, Harriague J, Planchenault T, Baleux F, Gunera-Saad N, Arenzana-Seisdedos F, Bachelerie F (2008) CXCR4 dimerization and beta-arrestin-mediated signaling account for the enhanced chemotaxis to CXCL12 in WHIM syndrome. Blood 112:34–44PubMedCrossRefGoogle Scholar
  13. 13.
    Percherancier Y, Berchiche YA, Slight I, Volkmer-Engert R, Tamamura H, Fujii N, Bouvier M, Heveker N (2005) Bioluminescence resonance energy transfer reveals ligand-induced conformational changes in CXCR4 homo- and heterodimers. J Biol Chem 280:9895–9903PubMedCrossRefGoogle Scholar
  14. 14.
    Balabanian K, Lagane B, Pablos JL, Laurent L, Planchenault T, Verola O, Lebbe C, Kerob D, Dupuy A, Hermine O, Nicolas JF, Latger-Cannard V, Bensoussan D, Bordigoni P, Baleux F, Le Deist F, Virelizier JL, Arenzana-Seisdedos F, Bachelerie F (2005) WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood 105:2449–2457PubMedCrossRefGoogle Scholar
  15. 15.
    Kramp BK, Sarabi A, Koenen RR, Weber C (2011) Heterophilic chemokine receptor interactions in chemokine signaling and biology. Exp Cell Res 317:655–663PubMedCrossRefGoogle Scholar
  16. 16.
    Salanga CL, O’Hayre M, Handel T (2009) Modulation of chemokine receptor activity through dimerization and crosstalk. Cell Mol Life Sci 66:1370–1386PubMedCrossRefGoogle Scholar
  17. 17.
    El-Asmar L, Springael JY, Ballet S, Andrieu EU, Vassart G, Parmentier M (2005) Evidence for negative binding cooperativity within CCR5-CCR2b heterodimers. Mol Pharmacol 67:460–469PubMedCrossRefGoogle Scholar
  18. 18.
    Sohy D, Parmentier M, Springael JY (2007) Allosteric transinhibition by specific antagonists in CCR2/CXCR4 heterodimers. J Biol Chem 282:30062–30069PubMedCrossRefGoogle Scholar
  19. 19.
    Sohy D, Yano H, de Nadai P, Urizar E, Guillabert A, Javitch JA, Parmentier M, Springael JY (2009) Hetero-oligomerization of CCR2, CCR5, and CXCR4 and the protean effects of “selective” antagonists. J Biol Chem 284:31270–31279PubMedCrossRefGoogle Scholar
  20. 20.
    Kenakin T (2011) Functional selectivity and biased receptor signaling. J Pharmacol Exp Ther 336:296–302PubMedCrossRefGoogle Scholar
  21. 21.
    Contento RL, Molon B, Boularan C, Pozzan T, Manes S, Marullo S, Viola A (2008) CXCR4-CCR5: a couple modulating T cell functions. Proc Natl Acad Sci USA 105:10101–10106PubMedCrossRefGoogle Scholar
  22. 22.
    Bulenger S, Marullo S, Bouvier M (2005) Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol Sci 26:131–137PubMedCrossRefGoogle Scholar
  23. 23.
    Hernanz-Falcon P, Rodriguez-Frade JM, Serrano A, Juan D, del Sol A, Soriano SF, Roncal F, Gomez L, Valencia A, Martinez AC, Mellado M (2004) Identification of amino acid residues crucial for chemokine receptor dimerization. Nat Immunol 5:216–223PubMedCrossRefGoogle Scholar
  24. 24.
    Lemay J, Marullo S, Jockers R, Alizon M, Brelot A (2005) On the dimerization of CCR5. Nat Immunol 6:535, author reply 535–536PubMedCrossRefGoogle Scholar
  25. 25.
    Hernanz-Falcon P, Rodriguez-Frade JM, Serrano A, Martinez AC, Mellado M (2005) Response to “On the dimerization of CCR5”. Nat Immunol 6:535–536CrossRefGoogle Scholar
  26. 26.
    Harikumar KG, Pinon DI, Miller LJ (2007) Transmembrane segment IV contributes a functionally important interface for oligomerization of the class II G protein-coupled secretin receptor. J Biol Chem 282:30363–30372PubMedCrossRefGoogle Scholar
  27. 27.
    Harikumar KG, Happs RM, Miller LJ (2008) Dimerization in the absence of higher-order oligomerization of the G protein-coupled secretin receptor. Biochim Biophys Acta 1778:2555–2563PubMedCrossRefGoogle Scholar
  28. 28.
    Gao F, Harikumar KG, Dong M, Lam PCH, Sexton PM, Christopoulos A, Bordner A, Abagyan R, Miller LJ (2009) Functional importance of a structurally distinct homodimeric complex of the family B G protein-coupled secretin receptor. Mol Pharmacol 76:264–274PubMedCrossRefGoogle Scholar
  29. 29.
    Pioszak AA, Harikumar KG, Parker NR, Miller LJ, Xu HE (2010) Dimeric arrangement of the parathyroid hormone receptor and a structural mechanism for ligand-induced dissociation. J Biol Chem 285:12435–12444PubMedCrossRefGoogle Scholar
  30. 30.
    Harikumar KG, Ball AM, Sexton PM, Miller LJ (2010) Importance of lipid-exposed residues in transmembrane segment four for family B calcitonin receptor homo-dimerization. Regul Pept 164:113–119PubMedCrossRefGoogle Scholar
  31. 31.
    Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071PubMedCrossRefGoogle Scholar
  32. 32.
    Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the mu-opioid receptor bound to a morphinan antagonist. Nature 485(7398):321–326PubMedCrossRefGoogle Scholar
  33. 33.
    Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang XP, Carroll FI, Mascarella SW, Westkaemper RB, Mosier PD, Roth BL, Cherezov V, Stevens RC (2012) Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485(7398):327–332PubMedCrossRefGoogle Scholar
  34. 34.
    Wang J, He L, Combs CA, Roderiquez G, Norcross MA (2006) Dimerization of CXCR4 in living malignant cells: control of cell migration by a synthetic peptide that reduces homologous CXCR4 interactions. Mol Cancer Ther 5:2474–2483PubMedCrossRefGoogle Scholar
  35. 35.
    Lee B, Doranz BJ, Ratajczak MZ, Doms RW (1998) An intricate Web: chemokine receptors, HIV-1 and hematopoiesis. Stem Cells 16:79–88PubMedCrossRefGoogle Scholar
  36. 36.
    de la Fuente M, Noble DN, Verma S, Nieman MT (2012) Mapping human protease-activated receptor 4 (PAR4) homodimer interface to transmembrane helix 4. J Biol Chem 287:10414–10423PubMedCrossRefGoogle Scholar
  37. 37.
    Gurevich VV, Gurevich EV (2008) GPCR monomers and oligomers: it takes all kinds. Trends Neurosci 31:74–81PubMedCrossRefGoogle Scholar
  38. 38.
    Khelashvili G, Dorff K, Shan J, Camacho-Artacho M, Skrabanek L, Vroling B, Bouvier M, Devi LA, George SR, Javitch JA, Lohse MJ, Milligan G, Neubig RR, Palczewski K, Parmentier M, Pin JP, Vriend G, Campagne F, Filizola M (2010) GPCR-OKB: the G protein coupled receptor oligomer knowledge base. Bioinformatics 26:1804–1805PubMedCrossRefGoogle Scholar
  39. 39.
    Skrabanek L, Murcia M, Bouvier M, Devi L, George SR, Lohse MJ, Milligan G, Neubig R, Palczewski K, Parmentier M, Pin JP, Vriend G, Javitch JA, Campagne F, Filizola M (2007) Requirements and ontology for a G protein-coupled receptor oligomerization knowledge base. BMC Bioinformatics 8:177PubMedCrossRefGoogle Scholar
  40. 40.
    Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JET, Lazareno S, Molloy JE, Birdsall NJM (2010) Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci USA 107:2693–2698PubMedCrossRefGoogle Scholar
  41. 41.
    Marullo S, Bouvier M (2007) Resonance energy transfer approaches in molecular pharmacology and beyond. Trends Pharmacol Sci 28:362–365PubMedCrossRefGoogle Scholar
  42. 42.
    Milligan G, Bouvier M (2005) Methods to monitor the quaternary structure of G protein-coupled receptors. FEBS J 272:2914–2925PubMedCrossRefGoogle Scholar
  43. 43.
    Ayoub MA, Pfleger KDG (2010) Recent advances in bioluminescence resonance energy transfer technologies to study GPCR heteromerization. Curr Opin Pharmacol 10:44–52PubMedCrossRefGoogle Scholar
  44. 44.
    Issad T, Jockers R, Ali H, Haribabu B, Walker JM (2006) Bioluminescence resonance energy transfer to monitor protein–protein interactions. In: Walker JM (ed) Transmembrane signaling protocols, vol 332. Humana Press, New York, pp 195–209CrossRefGoogle Scholar
  45. 45.
    Achour L, Kamal M, Jockers R, Marullo S, Luttrell LM, Ferguson SSG (2011) Using quantitative BRET to assess G-protein-coupled receptor homo- and heterodimerization. In: Walker JM (ed) Signal transduction protocols, vol 756. Humana Press, New York, pp 183–200CrossRefGoogle Scholar
  46. 46.
    Kubale V, Drinovec L, Vrecl M (2012) Quantitative assessment of seven transmembrane receptors (7TMRs) oligomerization by bioluminescence resonance energy transfer (BRET) technology. In: Lapota DD (ed) Bioluminescence—recent advances in oceanic measurements and laboratory applications. InTech, Rijeka, pp 81–95Google Scholar
  47. 47.
    Pfleger KDG, Eidne KA (2006) Illuminating insights into protein–protein interactions using bioluminescence resonance energy transfer (BRET). Nat Meth 3:165–174CrossRefGoogle Scholar
  48. 48.
    Kocan M, Pfleger KDG, Willars GB, Challiss RAJ (2011) Study of GPCR–protein interactions by BRET. Receptor signal transduction protocols, vol 746. Humana Press, pp. 357–371Google Scholar
  49. 49.
    Hamdan FF, Percherancier Y, Breton B, Bouvier M (2006) Monitoring protein–protein interactions in living cells by bioluminescence resonance energy transfer (BRET). In Current protocols in neuroscience. Wiley, New YorkGoogle Scholar
  50. 50.
    Boute N, Jockers R, Issad T (2002) The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol Sci 23:351–354PubMedCrossRefGoogle Scholar
  51. 51.
    James JR, Oliveira MI, Carmo AM, Iaboni A, Davis SJ (2006) A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat Meth 3:1001–1006CrossRefGoogle Scholar
  52. 52.
    Comps-Agrar L, Maurel D, Rondard P, Pin J-P, Trinquet E, Prézeau L, Luttrell LM, Ferguson SSG (2011) Cell-surface protein–protein interaction analysis with time-resolved FRET and Snap-Tag Technologies: application to G-protein-coupled receptor oligomerization. Signal transduction protocols, vol 756. Humana Press, New York, pp. 201–214Google Scholar
  53. 53.
    Albizu L, Cottet M, Kralikova M, Stoev S, Seyer R, Brabet I, Roux T, Bazin H, Bourrier E, Lamarque L, Breton C, Rives M-L, Newman A, Javitch J, Trinquet E, Manning M, Pin J-P, Mouillac B, Durroux T (2010) Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol 6:587–594PubMedCrossRefGoogle Scholar
  54. 54.
    Ferre S, Franco R (2010) Oligomerization of G-protein-coupled receptors: a reality. Curr Opin Pharmacol 10:1–5PubMedCrossRefGoogle Scholar
  55. 55.
    McLean AJ, Milligan G (2000) Ligand regulation of green fluorescent protein-tagged forms of the human beta(1)- and beta(2)-adrenoceptors; comparisons with the unmodified receptors. Br J Pharmacol 130:1825–1832PubMedCrossRefGoogle Scholar
  56. 56.
    Mercier J-FO, Salahpour A, Angers SP, Breit A, Bouvier M (2002) Quantitative assessment of beta1- and beta2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J Biol Chem 277:44925–44931PubMedCrossRefGoogle Scholar
  57. 57.
    Salahpour A, Masri B (2007) Experimental challenge to a “rigorous” BRET analysis of GPCR oligomerization. Nat Meth 4:599–600CrossRefGoogle Scholar
  58. 58.
    Veatch W, Stryer L (1977) The dimeric nature of the gramicidin A transmembrane channel: conductance and fluorescence energy transfer studies of hybrid channels. J Mol Biol 113:89–102PubMedCrossRefGoogle Scholar
  59. 59.
    Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein. J Biol Chem 276:29188–29194PubMedCrossRefGoogle Scholar
  60. 60.
    Patterson G, Day RN, Piston D (2001) Fluorescent protein spectra. J Cell Sci 114:837–838PubMedGoogle Scholar
  61. 61.
    Robitaille M, Héroux I, Baragli A, Hébert TE, Rich PB, Douillet C (2009) Novel tools for use in bioluminescence resonance energy transfer (BRET) assays. Bioluminescence. Vol 574. Humana Press, pp. 215–234Google Scholar
  62. 62.
    Kaczor AA, Selent J (2011) Oligomerization of G-protein-coupled receptors: biochemical and biophysical methods. Curr Med Chem 18:4606–4634PubMedCrossRefGoogle Scholar
  63. 63.
    Ciruela F, Vilardaga J-P, Fernandez-Duenas V (2010) Lighting up multiprotein complexes: lessons from GPCR oligomerization. Trends Biotechnol 28:407–415PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Irina Kufareva
    • 1
  • Bryan Stephens
    • 1
  • C. Taylor Gilliland
    • 1
  • Beili Wu
    • 2
    • 3
  • Gustavo Fenalti
    • 2
  • Damon Hamel
    • 1
    • 4
  • Raymond C. Stevens
    • 2
  • Ruben Abagyan
    • 1
  • Tracy M. Handel
    • 1
  1. 1.Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaUSA
  2. 2.The Scripps Research InstituteLa JollaUSA
  3. 3.Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
  4. 4.Janssen Research and DevelopmentSan DiegoUSA

Personalised recommendations