Skip to main content

Introduction to Mass Spectrometry-Based Proteomics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1007))

Abstract

Mass spectrometry has been widely applied to study biomolecules and one rapidly developing field is the global analysis of proteins, proteomics. Understanding and handling mass spectrometry data is a multifaceted task that requires many decisions to be made to get the most comprehensive information from an experiment. Later chapters in this book deal in-depth with various aspects of the process and how different tools can be applied to the many analytical challenges. This introductory chapter is intended as a basic introduction to mass spectrometry (MS)-based proteomics to set the scene for newcomers and give pointers to reference material.

There are many applications of mass spectrometry in proteomics and each application is associated with some analytical choices, instrumental limitations and data processing steps that depend on the aim of the study and means of conducting it. Different aspects of the proteome can be explored by choosing the right combination of sample preparation, MS instrumentation and data processing. This chapter gives an outline for some of these commonly used setups and some of the key concepts, many of which are explored in greater depth in later chapters.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Patterson SD, Aebersold R (1995) Mass spectrometric approaches for the identification of gel-separated proteins. Electrophoresis 16:1791–1814

    Article  PubMed  CAS  Google Scholar 

  2. Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham Cooks R (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40:430–443

    Article  PubMed  CAS  Google Scholar 

  3. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  PubMed  CAS  Google Scholar 

  4. Jonscher KR, Yates JR 3rd (1997) The quadrupole ion trap mass spectrometer–a small solution to a big challenge. Anal Biochem 244:1–15

    Article  PubMed  CAS  Google Scholar 

  5. Hadden WF, McLafferty FW (1968) Metastable ion characteristics. VII. Collision-induced metastables. J Am Chem Soc 90:4745–4746

    Article  Google Scholar 

  6. Siuzak G (1996) Mass spectrometry in biotechnology. Academic, San Diego

    Google Scholar 

  7. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    Article  PubMed  CAS  Google Scholar 

  8. Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 4:709–712

    Article  PubMed  CAS  Google Scholar 

  9. Laskin J, Futrell JH (2003) Collisional activation of peptide ions in FT-ICR mass spectrometry. Mass Spectrom Rev 22:158–181

    Article  PubMed  CAS  Google Scholar 

  10. Kuwata H, Yip TT, Yip CL, Tomita M, Hutchens TW (1998) Bactericidal domain of lactoferrin: detection, quantitation, and characterization of lactoferricin in serum by SELDI affinity mass spectrometry. Biochem Biophys Res Commun 245:764–773

    Article  PubMed  CAS  Google Scholar 

  11. Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA 101:9528–9533

    Article  PubMed  CAS  Google Scholar 

  12. Burlingame AL, Boyd RK, Gaskell SJ (1994) Mass spectrometry. Anal Chem 66:634R–683R

    Article  PubMed  CAS  Google Scholar 

  13. Zubarev RA, Horn DM, Fridriksson EK, Kelleher NL, Kruger NA, Lewis MA, Carpenter BK, McLafferty FW (2000) Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72:563–573

    Article  PubMed  CAS  Google Scholar 

  14. James H, Barnes IV, Hieftje GM (2004) Recent advances in detector-array technology for mass spectrometry. Int J Mass Spectrom 238:33–46

    Article  CAS  Google Scholar 

  15. Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Electrosonic spray ionization. A gentle technique for generating folded proteins and protein complexes in the gas phase and for studying ion-molecule reactions at atmospheric pressure. Anal Chem 76:4050–4058

    Article  PubMed  CAS  Google Scholar 

  16. Todd JFJ, March RE (1999) A retrospective review of the development and application of the quadrupole ion trap prior to the appearance of commercial instruments. Int J Mass Spectrom 190/191:9–35

    Article  CAS  Google Scholar 

  17. Spengler B, Kirsch D, Kaufmann R (1991) Metastable decay of peptides and proteins in matrix assisted laser desorption mass spectrometry. Rapid Commun Mass Spectrom 5:198–202

    Article  CAS  Google Scholar 

  18. Little DP, Speir JP, Senko MW, O'Connor PB, McLafferty FW (1994) Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing. Anal. Chem. 66: 2809–15

    Article  PubMed  CAS  Google Scholar 

  19. James P (2001) Proteome research: mass spectrometry. Springer, New York, p 35

    Book  Google Scholar 

  20. Price WD, Schnier PD, Williams ER (1996) Tandem mass spectrometry of large biomolecule ions by blackbody infrared radiative dissociation. Anal Chem 68:859–866

    Article  PubMed  CAS  Google Scholar 

  21. Barefoot RR (2004) Determination of platinum group elements and gold in geological materials: a review of recent magnetic sector and laser ablation applications. Anal Chim Acta 509:119–125

    Article  CAS  Google Scholar 

  22. Cooks RG, Ast T, Beynon JH (1975) Anomalous metastable peaks. Int J Mass Spectrom Ion Phys 16:55

    Article  Google Scholar 

  23. Chait BT (2006) Chemistry. Mass spectrometry: bottom-up or top-down? Science 314:65–66

    Article  PubMed  CAS  Google Scholar 

  24. Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  PubMed  CAS  Google Scholar 

  25. Kelleher NL (2004) Top-down proteomics. Anal Chem 76:197A–203A

    Article  PubMed  Google Scholar 

  26. Perry RH, Cooks RG, Noll RJ (2008) Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom Rev 27:661–699

    Article  PubMed  CAS  Google Scholar 

  27. Armirotti A, Damonte G (2010) Achievements and perspectives of top-down proteomics. Proteomics 10:3566–3576

    Article  PubMed  CAS  Google Scholar 

  28. Doucet A, Kleifeld O, Kizhakkedathu JN, Overall CM (2011) Identification of proteolytic products and natural protein N-termini by Terminal Amine Isotopic Labeling of Substrates (TAILS). Methods Mol Biol 753:273–287

    Article  PubMed  CAS  Google Scholar 

  29. Schilling O, Huesgen PF, Barre O, Overall CM (2011) Identification and relative quantification of native and proteolytically generated protein C-termini from complex proteomes: C-terminome analysis. Methods Mol Biol 781:59–69

    Article  PubMed  CAS  Google Scholar 

  30. Prudova A, auf dem Keller U, Butler GS, Overall CM (2010) Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol Cell Proteomics 9:894–911

    Article  PubMed  CAS  Google Scholar 

  31. Van Damme P, Martens L, Van Damme J, Hugelier K, Staes A, Vandekerckhove J, Gevaert K (2005) Caspase-specific and nonspecific in vivo protein processing during Fas-induced apoptosis. Nat Methods 2:771–777

    Article  PubMed  CAS  Google Scholar 

  32. Timmer JC, Enoksson M, Wildfang E, Zhu W, Igarashi Y, Denault JB, Ma Y, Dummitt B, Chang YH, Mast AE, Eroshkin A, Smith JW, Tao WA, Salvesen GS (2007) Profiling constitutive proteolytic events in vivo. Biochem J 407:41–48

    Article  PubMed  CAS  Google Scholar 

  33. La Scola B (2011) Intact cell MALDI-TOF mass spectrometry-based approaches for the diagnosis of bloodstream infections. Expert Rev Mol Diagn 11:287–298

    PubMed  Google Scholar 

  34. Zhang Q, Willison LN, Tripathi P, Sathe SK, Roux KH, Emmett MR, Blakney GT, Zhang HM, Marshall AG (2011) Epitope mapping of a 95 kDa antigen in complex with antibody by solution-phase amide backbone hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 83:7129–7136

    Article  PubMed  CAS  Google Scholar 

  35. Margolis J, Kenrick KG (1969) 2-dimensional resolution of plasma proteins by combination of polyacrylamide disc and gradient gel electrophoresis. Nature 221:1056–1057

    Article  PubMed  CAS  Google Scholar 

  36. Klose J, Kobalz U (1995) Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16:1034–1059

    Article  PubMed  CAS  Google Scholar 

  37. Matthiesen R, Azevedo L, Amorim A, Carvalho AS (2011) Discussion on common data analysis strategies used in MS-based proteomics. Proteomics 11:604–619

    Article  PubMed  CAS  Google Scholar 

  38. Inagaki N, Katsuta K (2004) Large gel two-dimensional electrophoresis: improving recovery of cellular proteome. Curr Proteomics 1:35–39

    Article  CAS  Google Scholar 

  39. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    PubMed  CAS  Google Scholar 

  40. Patton WF, Schulenberg B, Steinberg TH (2002) Two-dimensional gel electrophoresis; better than a poke in the ICAT? Curr Opin Biotechnol 13:321–328

    Article  PubMed  CAS  Google Scholar 

  41. Rosenfeld J, Capdevielle J, Guillemot JC, Ferrara P (1992) In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem 203:173–179

    Article  PubMed  CAS  Google Scholar 

  42. Hellman U, Wernstedt C, Gonez J, Heldin CH (1995) Improvement of an “In-Gel” digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal Biochem 224:451–455

    Article  PubMed  CAS  Google Scholar 

  43. Bienvenut WV, Sanchez JC, Karmime A, Rouge V, Rose K, Binz PA, Hochstrasser DF (1999) Toward a clinical molecular scanner for proteome research: parallel protein chemical processing before and during western blot. Anal Chem 71:4800–4807

    Article  PubMed  CAS  Google Scholar 

  44. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  PubMed  CAS  Google Scholar 

  45. Bunkenborg J, Garcia GE, Paz MI, Andersen JS, Molina H (2010) The minotaur proteome: avoiding cross-species identifications deriving from bovine serum in cell culture models. Proteomics 10:3040–3044

    Article  PubMed  CAS  Google Scholar 

  46. Zhao C, O'Connor PB (2007) Removal of polyethylene glycols from protein samples using titanium dioxide. Anal Biochem 365:283–285

    Article  PubMed  CAS  Google Scholar 

  47. Williams S (2004) Ghost peaks in reversed-phase gradient HPLC: a review and update. J Chromatogr A 1052:1–11

    Article  PubMed  CAS  Google Scholar 

  48. Wisniewski JR, Zougman A, Mann M (2009) Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J Proteome Res 8:5674–5678

    Article  PubMed  CAS  Google Scholar 

  49. Matthiesen R, Bauw G, Welinder KG (2004) Use of performic acid oxidation to expand the mass distribution of tryptic peptides. Anal Chem 76:6848–6852

    Article  PubMed  CAS  Google Scholar 

  50. Smith RL, Shaw E (1969) Pseudotrypsin. A modified bovine trypsin produced by limited autodigestion. J Biol Chem 244:4704–4712

    PubMed  CAS  Google Scholar 

  51. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552

    PubMed  CAS  Google Scholar 

  52. Willett WS, Gillmor SA, Perona JJ, Fletterick RJ, Craik CS (1995) Engineered metal regulation of trypsin specificity. Biochemistry 34:2172–2180

    Article  PubMed  CAS  Google Scholar 

  53. Tran JC, Zamdborg L, Ahlf DR, Lee JE, Catherman AD, Durbin KR, Tipton JD, Vellaichamy A, Kellie JF, Li M, Wu C, Sweet SM, Early BP, Siuti N, LeDuc RD, Compton PD, Thomas PM, Kelleher NL (2011) Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 480:254–258

    Article  PubMed  CAS  Google Scholar 

  54. Larsen MR, Cordwell SJ, Roepstorff P (2002) Graphite powder as an alternative or supplement to reversed-phase material for desalting and concentration of peptide mixtures prior to matrix-assisted laser desorption/ionization-mass spectrometry. Proteomics 2:1277–1287

    Article  PubMed  CAS  Google Scholar 

  55. Hagglund P, Bunkenborg J, Elortza F, Jensen ON, Roepstorff P (2004) A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res 3:556–566

    Article  PubMed  CAS  Google Scholar 

  56. Pinkse MWH, Uitto PM, Hilhorst MJ, Ooms B, Heck AJR (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76:3935–3943

    Article  PubMed  CAS  Google Scholar 

  57. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJ (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886

    Article  PubMed  CAS  Google Scholar 

  58. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100:6940–6945

    Article  PubMed  CAS  Google Scholar 

  59. Pratt JM, Simpson DM, Doherty MK, Rivers J, Gaskell SJ, Beynon RJ (2006) Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat Protoc 1:1029–1043

    Article  PubMed  CAS  Google Scholar 

  60. Brun V, Dupuis A, Adrait A, Marcellin M, Thomas D, Court M, Vandenesch F, Garin J (2007) Isotope-labeled protein standards: toward absolute quantitative proteomics. Mol Cell Proteomics 6:2139–2149

    Article  PubMed  CAS  Google Scholar 

  61. Brownridge P, Beynon RJ (2011) The importance of the digest: proteolysis and absolute quantification in proteomics. Methods 54:351–360

    Article  PubMed  CAS  Google Scholar 

  62. Sachs AN, Pisitkun T, Hoffert JD, Yu MJ, Knepper MA (2008) LC-MS/MS analysis of differential centrifugation fractions from native inner medullary collecting duct of rat. Am J Physiol Renal Physiol 295:F1799–F1806

    Article  PubMed  CAS  Google Scholar 

  63. Seib FP, Jones AT, Duncan R (2006) Establishment of subcellular fractionation techniques to monitor the intracellular fate of polymer therapeutics I. Differential centrifugation fractionation B16F10 cells and use to study the intracellular fate of HPMA copolymer—doxorubicin. J Drug Target 14:375–390

    Article  PubMed  CAS  Google Scholar 

  64. Vogelmann R, Nelson WJ (2007) Separation of cell-cell adhesion complexes by differential centrifugation. Methods Mol Biol 370:11–22

    Article  PubMed  CAS  Google Scholar 

  65. Simpson RJ (2006) Fractional precipitation of proteins by ammonium sulfate. CSH Protoc 1

    Google Scholar 

  66. Wingfield P (2001) Protein precipitation using ammonium sulfate. Curr Protoc Protein Sci A.3F.1–A.3F.8. http://onlinelibrary.wiley.com/doi/10.1002/0471140864.psa03fs13/abstract

  67. Lopitz-Otsoa F, Rodriguez-Suarez E, Aillet F, Casado-Vela J, Lang V, Matthiesen R, Elortza F, Rodriguez MS (2012) Integrative analysis of the ubiquitin proteome isolated using Tandem Ubiquitin Binding Entities (TUBEs). J Proteomics 75(10):2998–3014

    Article  PubMed  CAS  Google Scholar 

  68. Dai Z, Zhou J, Qiu SJ, Liu YK, Fan J (2009) Lectin-based glycoproteomics to explore and analyze hepatocellular carcinoma-related glycoprotein markers. Electrophoresis 30:2957–2966

    Article  PubMed  CAS  Google Scholar 

  69. Fung KY, Cursaro C, Lewanowitsch T, Brierley GV, McColl SR, Lockett T, Head R, Hoffmann P, Cosgrove L (2011) A combined free-flow electrophoresis and DIGE approach to identify proteins regulated by butyrate in HT29 cells. Proteomics 11:964–971

    Article  PubMed  CAS  Google Scholar 

  70. Kim KH, Kim JY, Kim MO, Moon MH (2012) Two dimensional (pI & d(s)) separation of phosphorylated proteins by isoelectric focusing/asymmetrical flow field-flow fractionation: application to prostatic cancer cell line. J Proteomics 75(8):2297–2305

    Article  PubMed  CAS  Google Scholar 

  71. Bökelmann V, Spengler B, Kaufmann R (1995) Dynamical parameters of ion ejection and ion formation in matrix-assisted laser desorption/ionization. Eur Mass Spectrom 27:156–158

    Google Scholar 

  72. Beavis RC, Chait BT (1990) Rapid, sensitive analysis of protein mixtures by mass spectrometry. Proc Natl Acad Sci USA 87:6873–6877

    Article  PubMed  CAS  Google Scholar 

  73. Cohen SL, Chait BT (1996) Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Anal Chem 68:31–37

    Article  PubMed  CAS  Google Scholar 

  74. Vorm O, Roepstorff P, Mann M (1994) Improved resolution and very high sensitivity in MALDI TOF of matrix surfaces made by fast evaporation. Anal Chem 66:3281–3287

    Article  CAS  Google Scholar 

  75. Kussmann M, Nordhoff E, Nielsen RB, Hábel S, Larsen MR, Jakobsen L, Gobom J, Mirgorodskaya E, Kristensen AK, Palm L, Roepstorff P (1997) Matrix-assisted laser desorption/ionization mass spectrometry sample preparation techniques designed for various peptide and protein analytes. J Mass Spectrom 32:593–601

    Article  CAS  Google Scholar 

  76. Guilhaus M (1995) Principles and instrumentation in time-of-flight mass spectrometry. J Mass Spectrom 30:1519–1552

    Article  CAS  Google Scholar 

  77. Matthiesen R (2007) Methods, algorithms and tools in computational proteomics: a practical point of view. Proteomics 7:2815–2832

    Article  PubMed  CAS  Google Scholar 

  78. Vestal ML, Juhasz P, Martin SA (1995) Delayed extraction matrix-assisted laser desorption time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 9:1044–1050

    Article  CAS  Google Scholar 

  79. Patterson SD (1995) Matrix-assisted laser-desorption/ionization mass spectrometric approaches for the identification of gel-separated proteins in the 5–50 pmol range. Electrophoresis 16:1104–1114

    Article  PubMed  CAS  Google Scholar 

  80. Keller BO, Li L (2000) Discerning matrix-cluster peaks in matrix-assisted laser desorption/ionization time-of-flight mass spectra of dilute peptide mixtures. J Am Soc Mass Spectrom 11:88–93

    Article  PubMed  CAS  Google Scholar 

  81. Guo Z, Zhang Q, Zou H, Guo B, Ni J (2002) A method for the analysis of low-mass molecules by MALDI-TOF mass spectrometry. Anal Chem 74:1637–1641

    Article  PubMed  CAS  Google Scholar 

  82. Coursey JS, Schwab DJ, Dragoset RA (2001) Atomic weights and isotopic compositions (version 2.3.1). Available: http://physics.nist.gov/Comp 2003, July 7, National Institute of Standards and Technology, Gaithersburg, MD

  83. Snyder AP (2000) Interpreting protein mass spectra, a comprehensive resource. Oxford University Press, Oxford

    Google Scholar 

  84. Zheng PP, Luider TM, Pieters R, Avezaat CJ, van den Bent MJ, Smitt PA, Kros JM (2003) Identification of tumor-related proteins by proteomic analysis of cerebrospinal fluid from patients with primary brain tumors. J Neuropathol Exp Neurol 62:855–862

    PubMed  CAS  Google Scholar 

  85. Jensen ON, Podtelejnikov AV, Mann M (1997) Identification of the components of simple protein mixtures by high-accuracy peptide mass mapping and database searching. Anal Chem 69:4741–4750

    Article  PubMed  CAS  Google Scholar 

  86. Zhang N, Aebersold R, Schwikowski B (2002) ProbID: A probabilistic algorithm to identify peptides through sequence database searching using tandem mass spectral data. Proteomics 2:1406–1412

    Article  PubMed  CAS  Google Scholar 

  87. Smith RD, Loo JA, Edmonds CG, Barinaga CJ, Udseth HR (1990) New developments in biochemical mass spectrometry: electrospray ionization. Anal Chem 62:882–899

    Article  PubMed  CAS  Google Scholar 

  88. Ikonomou MG, Blades AT, Kebarle P (1991) Electrospray-Ion spray: a comparison of mechanisms and performance. Anal Chem 63:1989–1998

    Article  CAS  Google Scholar 

  89. Covey TR, Bonner RF, Shushan BI, Henion J (1988) The determination of protein, oligonucleotide and peptide molecular weights by ion-spray mass spectrometry. Rapid Commun Mass Spectrom 2:249–256

    Article  PubMed  CAS  Google Scholar 

  90. Mirza UA, Chait BT (1994) Effects of anions on the positive ion electrospray ionization mass spectra of peptides and proteins. Anal Chem 66:2898–2904

    Article  PubMed  CAS  Google Scholar 

  91. Köcher T, Allmaier G, Wilm M (2003) Nanoelectrospray-based detection and sequencing of substoichiometric amounts of phosphopeptides in complex mixtures. J Mass Spectrom 38:131–137

    Article  PubMed  CAS  Google Scholar 

  92. Gatlin CL, Tureçek F (1994) Acidity determination in droplets formed by electrospraying methanol-water solutions. Anal Chem 66:712–718

    Article  CAS  Google Scholar 

  93. Urvoas A, Amekraz B, Moulin C, Clainche LL, Stocklin R, Moutiez M (2003) Analysis of the metal-binding selectivity of the metallochaperone CopZ from Enterococcus hirae by electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 17:1889–1896

    Article  PubMed  CAS  Google Scholar 

  94. Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68:1–8

    Article  PubMed  CAS  Google Scholar 

  95. Choudhary G, Apffel A, Yin H, Hancock W (2000) Use of on-line mass spectrometric detection in capillary electrochromatography. J Chromatogr A 887:85–101

    Article  PubMed  CAS  Google Scholar 

  96. Wilm M, Shevchenko A, Houthaeve T, Breit S, Schweigerer L, Fotsis T, Mann M (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379:466–469

    Article  PubMed  CAS  Google Scholar 

  97. Todd JFJ, March RE (1999) A retrospective review of the development and application of the quadrupole ion trap prior to the appearance of commercial instruments. Int J Mass Spectrom 190(191):9–35

    Google Scholar 

  98. Chernushevich IV, Loboda AV, Thomson BA (2001) An introduction to quadrupole–time-of-flight mass spectrometry. J Mass Spectrom 36:849–865

    Article  PubMed  CAS  Google Scholar 

  99. Lammert SA, Rockwood AA, Wang M, Lee ML, Lee ED, Tolley SE, Oliphant JR, Jones JL, Waite RW (2006) Miniature toroidal radio frequency ion trap mass analyzer. J Am Soc Mass Spectrom 17:916–922

    Article  PubMed  CAS  Google Scholar 

  100. Michalski A, Damoc E, Hauschild JP, Lange O, Wieghaus A, Makarov A, Nagaraj N, Cox J, Mann M, Horning S (2011) Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol Cell Proteomics 10(M111):011015

    PubMed  Google Scholar 

  101. Hagglund P, Matthiesen R, Elortza F, Hojrup P, Roepstorff P, Jensen ON, Bunkenborg J (2007) An enzymatic deglycosylation scheme enabling identification of core fucosylated N-glycans and O-glycosylation site mapping of human plasma proteins. J Proteome Res 6:3021–3031

    Article  PubMed  CAS  Google Scholar 

  102. Carr SA, Huddleston MJ, Annan RS (1996) Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Anal Biochem 239:180–192

    Article  PubMed  CAS  Google Scholar 

  103. Cham Mead JA, Bianco L, Bessant C (2010) Free computational resources for designing selected reaction monitoring transitions. Proteomics 10:1106–1126

    Article  PubMed  CAS  Google Scholar 

  104. Sherman J, McKay MJ, Ashman K, Molloy MP (2009) How specific is my SRM?: the issue of precursor and product ion redundancy. Proteomics 9:1120–1123

    Article  PubMed  CAS  Google Scholar 

  105. Kinter M, Sherman NE (2000) Protein sequencing and identification using tandem mass spectrometry. Wiley, Hoboken, NJ

    Book  Google Scholar 

  106. Creasy DM, Cottrell JS (2002) Error tolerant searching of uninterpreted tandem mass spectrometry data. Proteomics 2:1426–1434

    Article  PubMed  CAS  Google Scholar 

  107. Eng J, McCormack A, Yates J (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  Google Scholar 

  108. Colinge J, Masselot A, Giron M, Dessingy T, Magnin J (2003) OLAV: towards high-throughput tandem mass spectrometry data identification. Proteomics 3:1454–1463

    Article  PubMed  CAS  Google Scholar 

  109. Matthiesen R (2007) Virtual expert mass spectrometrist v3.0: an integrated tool for proteome analysis. Methods Mol Biol 367:121–138

    PubMed  CAS  Google Scholar 

  110. Bjornson RD, Carriero NJ, Colangelo C, Shifman M, Cheung KH, Miller PL, Williams K (2008) X!!Tandem, an improved method for running X!tandem in parallel on collections of commodity computers. J Proteome Res 7:293–299

    Article  PubMed  CAS  Google Scholar 

  111. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805

    Article  PubMed  CAS  Google Scholar 

  112. Tharakan R, Martens L, Van Eyk JE, Graham DR (2008) OMSSAGUI: An open-source user interface component to configure and run the OMSSA search engine. Proteomics 8:2376–2378

    Article  PubMed  CAS  Google Scholar 

  113. Wysocki VH, Tsaprailis G, Smith LL, Breci LA (2000) Mobile and localized protons: a framework for understanding peptide dissociation. J Mass Spectrom 35:1399–1406

    Article  PubMed  CAS  Google Scholar 

  114. Paizs B, Suhai S (2002) Towards understanding some ion intensity relationships for the tandem mass spectra of protonated peptides. Rapid commun Mass Spectrom 16:1699–1702

    Article  PubMed  CAS  Google Scholar 

  115. Roepstorff P, Fohlman J (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 11:601

    Article  PubMed  CAS  Google Scholar 

  116. Havilio M, Haddad Y, Smilansky Z (2003) Intensity-based statistical scorer for tandem mass spectrometry. Anal Chem 75:435–444

    Article  PubMed  CAS  Google Scholar 

  117. Summerfield SG, Bolgar MS, Gaskell SJ (1997) Promotion and stabilization of ions in peptide b1 phenythiocarbamoyl derivatives: analogies with condensed-phase chemistry. J Mass Spectrom 32:225–231

    Article  CAS  Google Scholar 

  118. Schlosser A, Lehmann WD (2002) Patchwork peptide sequencing: extraction of sequence information from accurate mass data of peptide tandem mass spectra recorded at high resolution. Proteomics 2:524–533

    Article  PubMed  CAS  Google Scholar 

  119. Harrison AG, Csizmadia IG, Tang TH, Tu YP (2000) Reaction competition in the fragmentation of protonated dipeptides. J Mass Spectrom 35:683–688

    Article  PubMed  CAS  Google Scholar 

  120. Sleno L, Volmer DA (2004) Ion activation methods for tandem mass spectrometry. J Mass Spectrom 39:1091–1112

    Article  PubMed  CAS  Google Scholar 

  121. Csonka IP, Paizs B, Lendvay G, Suhai S (2000) Proton mobility in protonated peptides: a joint molecular orbital and RRKM study. Rapid Commun Mass Spectrom 14:417–431

    Article  PubMed  CAS  Google Scholar 

  122. Lee SA, Jiao CQ, Huang Y, Freiser BS (1993) Multiple excitation collisional activation in Fourier-transform mass spectrometry. Rapid Commun Mass Spectrom 7:819–821

    Article  CAS  Google Scholar 

  123. Jedrychowski MP, Huttlin EL, Haas W, Sowa ME, Rad R, Gygi SP (2011) Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics. Mol Cell Proteomics 10:M111 009910

    PubMed  Google Scholar 

  124. Cooper HJ, Hudgins RR, Håkansson K, Marshall AG (2002) Characterization of amino acid side chain losses in electron capture dissociation. J Am Soc Mass Spectrom 13:241–249

    Article  PubMed  CAS  Google Scholar 

  125. Zubarev RA, Kruger NA, Fridriksson EK, Lewis MA, Horn DM, Carpenter BK, McLafferty FW (1999) Electron capture dissociation of gaseous multiply-charged proteins is favoured at disulphide bonds and other sites of high hydrogen atom affinity. J Am Chem Soc 121:2857–2862

    Article  CAS  Google Scholar 

  126. Bakhtiar R, Guan Z (2005) Electron capture dissociation mass spectrometry in characterization of post-translational modifications. Biochem Biophys Res Commun 334:1–8

    Article  PubMed  CAS  Google Scholar 

  127. Chaurand P, Luetzenkirchen F, Spengler B (1999) Peptide and protein identification by matrix-assisted laser desorption ionization (MALDI) and MALDI-post-source decay time-of-flight mass spectrometry. J Am Soc Mass Spectrom 10:91–103

    Article  PubMed  CAS  Google Scholar 

  128. Cannon WR, Jarman KD (2003) Improved peptide sequencing using isotope information inherent in tandem mass spectra. Rapid Commun Mass Spectrom 17:1793–1801

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

R.M. is supported by Fundação para a Ciência e a Tecnologia (FCT) Ciência 2007. IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology and Higher Education and is partially supported by FCT. R.M. is further supported by FCT grants (PTDC/QUI-BIQ/099457/2008 and PTDC/EIA-EIA/099458/2008). J. B. gratefully acknowledges financial support from the Carlsberg foundation and the Lundbeck foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Matthiesen, R., Bunkenborg, J. (2013). Introduction to Mass Spectrometry-Based Proteomics. In: Matthiesen, R. (eds) Mass Spectrometry Data Analysis in Proteomics. Methods in Molecular Biology, vol 1007. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-392-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-392-3_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-391-6

  • Online ISBN: 978-1-62703-392-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics