Necrosis pp 67-73 | Cite as

Analysis of Pyroptosis in Bacterial Infection

  • Lia Danelishvili
  • Luiz E. Bermudez
Part of the Methods in Molecular Biology book series (MIMB, volume 1004)


Eukaryotic cells undergo death by several different mechanisms: apoptosis, a cell death that prevents inflammatory response; necrosis, when the cell membrane lyses and all the intracellular content is spilled outside; and pyroptosis, a cell death that is accompanied by the release of inflammatory cytokines by the dying cells. Pyroptosis is designed to attract a nonspecific innate response to the site of infection or tumor. In this chapter, we describe the methods used to study pyroptosis in a mammalian cell. The model organism used is Mycobacterium tuberculosis, which suppresses pyroptosis by macrophages, and possibly in dendritic cells.

Key words

Pyroptosis Apoptosis Necrosis Macrophages Methods Caspase-1 Inflammatory response 


  1. 1.
    Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7(2):99–109. doi:nrmicro2070 [pii],  10.1038/nrmicro2070 CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A, Warren SE, Wewers MD, Aderem A (2010) Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 11(12):1136–1142. doi:ni.1960 [pii],  10.1038/ni.1960 CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73(4):1907–1916. doi:73/4/1907 [pii],  10.1128/IAI.73.4.1907-1916.2005 CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16(1):3–11. doi:cdd2008150 [pii],  10.1038/cdd.2008.150 CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Monack DM, Mecsas J, Bouley D, Falkow S (1998) Yersinia-induced apoptosis in vivo aids in the establishment of a systemic infection of mice. J Exp Med 188(11):2127–2137CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Behar SM, Divangahi M, Remold HG (2010) Evasion of innate immunity by mycobacterium tuberculosis: is death an exit strategy? Nat Rev Microbiol 8(9):668–674. doi:nrmicro2387 [pii],  10.1038/nrmicro2387 PubMedCentralPubMedGoogle Scholar
  7. 7.
    Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girma M, Erickson S, Dixit VM (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430(6996):213–218. doi: 10.1038/nature02664, nature02664 [pii]CrossRefPubMedGoogle Scholar
  8. 8.
    Haimovich B, Venkatesan MM (2006) Shigella and Salmonella: death as a means of survival. Microbes Infect 8(2):568–577. doi:S1286-4579(05)00297-2 [pii],  10.1016/j.micinf.2005.08.002 CrossRefPubMedGoogle Scholar
  9. 9.
    Bergsbaken T, Cookson BT (2007) Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog 3(11):e161. doi:07-PLPA-RA-0189 [pii],  10.1371/journal.ppat.0030161 CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Danelishvili L, Yamazaki Y, Selker J, Bermudez LE (2010) Secreted mycobacterium tuberculosis Rv3654c and Rv3655c proteins participate in the suppression of macrophage apoptosis. PLoS One 5(5):e10474. doi: 10.1371/journal.pone.0010474 CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Danelishvili L, McGarvey J, Li YJ, Bermudez LE (2003) Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells. Cell Microbiol 5(9):649–660CrossRefPubMedGoogle Scholar
  12. 12.
    Danelishvili L, Everman JL, McNamara MJ, Bermudez LE (2011) Inhibition of the plasma-membrane-associated serine protease cathepsin G by mycobacterium tuberculosis Rv3364c suppresses caspase-1 and pyroptosis in macrophages. Front Microbiol 2:281. doi: 10.3389/fmicb.2011.00281 PubMedCentralPubMedGoogle Scholar
  13. 13.
    Duan L, Gan H, Arm J, Remold HG (2001) Cytosolic phospholipase A2 participates with TNF-alpha in the induction of apoptosis of human macrophages infected with Mycobacterium tuberculosis H37Ra. J Immunol 166(12):7469–7476CrossRefPubMedGoogle Scholar
  14. 14.
    Chen M, Gan H, Remold HG (2006) A mechanism of virulence: virulent mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J Immunol 176(6):3707–3716. doi:176/6/3707 [pii]CrossRefPubMedGoogle Scholar
  15. 15.
    van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, Brenner M, Peters PJ (2007) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129(7):1287–1298. doi:S0092-8674(07)00782-9 [pii],  10.1016/j.cell.2007.05.059 CrossRefPubMedGoogle Scholar
  16. 16.
    Rich EA, Torres M, Sada E, Finegan CK, Hamilton BD, Toossi Z (1997) Mycobacterium tuberculosis (MTB)-stimulated production of nitric oxide by human alveolar macrophages and relationship of nitric oxide production to growth inhibition of MTB. Tuber Lung Dis 78(5–6):247–255. doi:S0962-8479(97)90005-8 [pii]CrossRefPubMedGoogle Scholar
  17. 17.
    Pieters J (2008) Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe 3(6):399–407. doi:S1931-3128(08)00154-6 [pii],  10.1016/j.chom.2008.05.006 CrossRefPubMedGoogle Scholar
  18. 18.
    Fratti RA, Chua J, Vergne I, Deretic V (2003) Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc Natl Acad Sci U S A 100(9):5437–5442. doi: 10.1073/pnas.0737613100, 0737613100 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Miao EA, Andersen-Nissen E, Warren SE, Aderem A (2007) TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. Semin Immunopathol 29(3):275–288. doi: 10.1007/s00281-007-0078-z CrossRefPubMedGoogle Scholar
  20. 20.
    Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550. doi: 10.1146/annurev.immunol.021908.132612 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Lia Danelishvili
    • 1
  • Luiz E. Bermudez
    • 1
    • 2
    • 3
  1. 1.Department of Biomedical Sciences, College of Veterinary MedicineOregon State UniversityCorvallisUSA
  2. 2.Department of Microbiology, College of ScienceOregon State UniversityCorvallisUSA
  3. 3.Program of Molecular and Cell BiologyOregon State UniversityCorvallisUSA

Personalised recommendations