Advertisement

Employment of Complementary Dissociation Techniques for Body Fluid Characterization and Biomarker Discovery

  • David M. Good
  • Dorothea Rutishauser
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1002)

Abstract

Proteomic analysis of biological fluids has become the de facto method for biomarker discovery over the past half decade. Mass spectrometry, in particular, has emerged as the premier technology to perform such analysis. This shift in the prevailing choice of analytical method is primarily due to the rapid evolution of mass spectrometry technology, with advances in acquisition speed, increased resolving power and mass accuracy, and the development of novel fragmentation methods. The benefits of using one of these new fragmentation methods, electron-transfer dissociation, as a complement to the traditional dissociation technique (i.e., collision-activated dissociation) have been thoroughly illustrated. Detailed here is a method for proteomic analysis of a readily obtainable and often investigated biological fluid, blood plasma, which takes advantage of these complementary dissociation techniques and employs the most recent advances in mass spectrometry technology.

Key words

Biomarker Body fluid Mass spectrometry Electron-transfer dissociation 

Notes

Acknowledgment

D.M.G. acknowledges support from the Wenner-Gren Foundation.

References

  1. 1.
    Good DM, Thongboonkerd V, Novak J et al (2007) Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future. J Proteome Res 6:4549–4555PubMedCrossRefGoogle Scholar
  2. 2.
    Hye A, Lynham S, Thambisetty M et al (2006) Proteome-based plasma biomarkers for Alzheimer’s disease. Brain 129:3042–3050PubMedCrossRefGoogle Scholar
  3. 3.
    Ranganathan S, Williams E, Ganchev P et al (2005) Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. J Neurochem 95:1461–1471PubMedCrossRefGoogle Scholar
  4. 4.
    Zhang J, Goodlett DR, Quinn JF et al (2005) Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer disease. J Alzheimers Dis 7:125–133PubMedGoogle Scholar
  5. 5.
    Theodorescu D, Wittke S, Ross MM et al (2006) Discovery and validation of new protein biomarkers for 4 urothelial cancer: a prospective analysis. Lancet Oncol 7:230–240PubMedCrossRefGoogle Scholar
  6. 6.
    Zimmerli LU, Schiffer E, Zurbig P et al (2008) Urinary proteomic biomarkers on coronary artery disease. Mol Cell Proteomics 7:290–298PubMedGoogle Scholar
  7. 7.
    Lopez MF, Mikulskis A, Kuzdzal S et al (2005) High-resolution serum proteomic profiling of Alzheimer disease samples reveals disease-specific, carrier-protein-bound mass signatures. Clin Chem 51:1946–1954PubMedCrossRefGoogle Scholar
  8. 8.
    Rossing K, Mischak H, Dakna M et al (2008) Urinary proteomics in diabetes and CKD. J Am Soc Nephrol 19:1283–1290PubMedCrossRefGoogle Scholar
  9. 9.
    Hunt DF, Yates JR, Shabanowitz J et al (1986) Protein sequencing by tandem mass-spectrometry. Proc Natl Acad Sci USA 83:6233–6237PubMedCrossRefGoogle Scholar
  10. 10.
    Good DM, Wirtala M, McAlister GC et al (2007) Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics 6:1942–1951PubMedCrossRefGoogle Scholar
  11. 11.
    Huang YY, Triscari JM, Tseng GC et al (2005) Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns. Anal Chem 77:5800–5813PubMedCrossRefGoogle Scholar
  12. 12.
    Shi SDH, Hemling ME, Carr SA et al (2001) Phosphopeptide/phosphoprotein mapping by electron capture dissociation mass spectrometry. Anal Chem 73:19–22PubMedCrossRefGoogle Scholar
  13. 13.
    Schroeder MJ, Shabanowitz J, Schwartz JC et al (2004) A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal Chem 76:3590–3598PubMedCrossRefGoogle Scholar
  14. 14.
    DeGnore JP, Qin J (1998) Fragmentation of phosphopeptides in an ion trap mass spectrometer. J Am Soc Mass Spectrom 9:1175–1188PubMedCrossRefGoogle Scholar
  15. 15.
    Wells L, Vosseller K, Cole RN et al (2002) Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics 1:791–804PubMedCrossRefGoogle Scholar
  16. 16.
    Renfrow MB, Cooper HJ, Tomana M et al (2005) Determination of aberrant O-glycosylation in the IgA1 hinge region by electron capture dissociation Fourier transform-ion cyclotron resonance mass spectrometry. J Biol Chem 280:19136–19145PubMedCrossRefGoogle Scholar
  17. 17.
    Gong CX, Liu F, Grundke-Iqbal I et al (2005) Post-translational modifications of tau protein in Alzheimer’s disease. J Neural Transm 112:813–838PubMedCrossRefGoogle Scholar
  18. 18.
    Serrels A, Macpherson IRJ, Evans TRJ et al (2006) Identification of potential biomarkers for measuring inhibition of Src kinase activity in colon cancer cells following treatment with dasatinib. Mol Cancer Ther 5:3014–3022PubMedCrossRefGoogle Scholar
  19. 19.
    An HJ, Miyamoto S, Lancaster KS et al (2006) Profiling of glycans in serum for the discovery of potential biomarkers for ovarian cancer. J Proteome Res 5:1626–1635PubMedCrossRefGoogle Scholar
  20. 20.
    Syka JEP, Coon JJ, Schroeder MJ et al (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA 101:9528–9533PubMedCrossRefGoogle Scholar
  21. 21.
    Molina H, Horn DM, Tang N et al (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci USA 104:2199–2204PubMedCrossRefGoogle Scholar
  22. 22.
    Kim MS, Zhong J, Kandasamy K et al (2011) Systematic evaluation of alternating CID and ETD fragmentation for phosphorylated peptides. Proteomics 11:2568–2572PubMedCrossRefGoogle Scholar
  23. 23.
    McAlister GC, Berggren WT, Griep-Raming J et al (2008) A proteomics grade electron transfer dissociation-enabled hybrid linear ion trap-orbitrap mass spectrometer. J Proteome Res 7:3127–3136PubMedCrossRefGoogle Scholar
  24. 24.
    McAlister GC, Phanstiel D, Good DM et al (2007) Implementation of electron-transfer dissociation on a hybrid linear ion trap-orbitrap mass spectrometer. Anal Chem 79:3525–3534PubMedCrossRefGoogle Scholar
  25. 25.
    Williams DK, McAlister GC, Good DM et al (2007) Dual electrospray ion source for electron-transfer dissociation on a hybrid linear ion trap-orbitrap mass spectrometer. Anal Chem 79:7916–7919PubMedCrossRefGoogle Scholar
  26. 26.
    Swaney DL, McAlister GC, Coon JJ (2008) Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nat Methods 5:959–964PubMedCrossRefGoogle Scholar
  27. 27.
    Swaney DL, McAlister GC, Wirtala M et al (2007) Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal Chem 79:477–485PubMedCrossRefGoogle Scholar
  28. 28.
    Taylor CF, Paton NW, Lilley KS et al (2007) The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol 25: 887–893PubMedCrossRefGoogle Scholar
  29. 29.
    Mischak H, Apweiler R, Banks RE et al (2007) Clinical proteomics: a need to define the field and to begin to set adequate standards. Proteomics Clin Appl 1:148–156PubMedCrossRefGoogle Scholar
  30. 30.
    Good DM, Wenger CD, Coon JJ (2010) The effect of interfering ions on search algorithm performance for electron-transfer dissociation data. Proteomics 10:164–167PubMedCrossRefGoogle Scholar
  31. 31.
    Good DM, Wenger CD, McAlister GC et al (2009) Post-acquisition ETD spectral processing for increased peptide identifications. J Am Soc Mass Spectrom 20:1435–1440PubMedCrossRefGoogle Scholar
  32. 32.
    Wenger CD, Phanstiel DH, Lee MV et al (2011) COMPASS: a suite of pre- and post-search proteomics software tools for OMSSA. Proteomics 11:1064–1074PubMedCrossRefGoogle Scholar
  33. 33.
    Perkins DN, Pappin DJ, Creasy DM et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567PubMedCrossRefGoogle Scholar
  34. 34.
    Thompson A, Schafer J, Kuhn K et al (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • David M. Good
    • 1
  • Dorothea Rutishauser
    • 2
  1. 1.Karolinska InstituteStockholmSweden
  2. 2.Science for Life LaboratoryStockholmSweden

Personalised recommendations