Imaging Single Synaptic Vesicles in Mammalian Central Synapses with Quantum Dots

  • Qi Zhang
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 995)

Abstract

This protocol describes a sensitive and rigorous method to monitor the movement and turnover of single synaptic vesicles in live presynaptic terminals of mammalian central nervous system. This technique makes use of Photoluminescent semiconductor nanocrystals, quantum dots (Qdots), by their nanometer size, superior photoproperties, and pH-sensitivity. In comparison with previous fluorescent probes like styryl dyes and pH-sensitive fluorescent proteins, Qdots offer strict loading ratio, multi-modality detection, single vesicle precision, and most importantly distinctive signals for different modes of vesicle fusion. Qdots are spectrally compatible with existing fluorescent probes for synaptic vesicles and thus allow multichannel ­imaging. With easy modification, this technique can be applied to other types of synapses and cells.

Key words

Quantum dot Synaptic vesicle Full-collapse fusion Kiss-and-run Neurotransmitter 

Notes

Acknowledgments

I thank my postdoctoral mentor, Dr. R. W. Tsien, for giving me the opportunity to develop this Qdot-based vesicle labeling method in his lab. I also thank Invitrogen for providing the documentation of Qdots’ properties. This work was supported by grants from NIDA and AFAR to Q.Z.

References

  1. 1.
    Katz B (1969) The release of neural transmitter substances. Charles C Thomas, Springfield, ILGoogle Scholar
  2. 2.
    Suszkiw JB, Zimmermann H, Whittaker VP (1978) Vesicular storage and release of acetylcholine in Torpedo electroplaque synapses. J Neurochem 30(6):1269–1280PubMedCrossRefGoogle Scholar
  3. 3.
    Lisman JE, Raghavachari S, Tsien RW (2007) The sequence of events that underlie quantal transmission at central glutamatergic synapses. Nat Rev Neurosci 8(8):597–609PubMedCrossRefGoogle Scholar
  4. 4.
    Llinas R, Sugimori M, Silver RB (1992) Microdomains of high calcium concentration in a presynaptic terminal. Science 256(5057):677–679PubMedCrossRefGoogle Scholar
  5. 5.
    Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547PubMedCrossRefGoogle Scholar
  6. 6.
    Jackson MB, Chapman ER (2008) The fusion pores of Ca2+ -triggered exocytosis. Nat Struct Mol Biol 15(7):684–689PubMedCrossRefGoogle Scholar
  7. 7.
    Spruce AE et al (1990) Properties of the fusion pore that forms during exocytosis of a mast cell secretory vesicle. Neuron 4(5):643–654PubMedCrossRefGoogle Scholar
  8. 8.
    Aravanis AM, Pyle JL, Tsien RW (2003) Single synaptic vesicles fusing transiently and successively without loss of identity. Nature 423(6940):643–647PubMedCrossRefGoogle Scholar
  9. 9.
    He L et al (2006) Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature 444(7115):102–105PubMedCrossRefGoogle Scholar
  10. 10.
    Richards DA, Bai J, Chapman ER (2005) Two modes of exocytosis at hippocampal synapses revealed by rate of FM1-43 efflux from individual vesicles. J Cell Biol 168(6):929–939PubMedCrossRefGoogle Scholar
  11. 11.
    Serulle Y, Sugimori M, Llinas RR (2007) Imaging synaptosomal calcium concentration microdomains and vesicle fusion by using total internal reflection fluorescent microscopy. Proc Natl Acad Sci U S A 104(5):1697–1702PubMedCrossRefGoogle Scholar
  12. 12.
    Betz WJ, Mao F, Bewick GS (1992) Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals. J Neurosci 12:363–375PubMedGoogle Scholar
  13. 13.
    Miesenböck G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394(6689):192–195PubMedCrossRefGoogle Scholar
  14. 14.
    Aravanis AM et al (2003) Imaging single synaptic vesicles undergoing repeated fusion events: kissing, running, and kissing again. Neuropharmacology 45(6):797–813PubMedCrossRefGoogle Scholar
  15. 15.
    Zenisek D et al (2002) A membrane marker leaves synaptic vesicles in milliseconds after exocytosis in retinal bipolar cells. Neuron 35(6):1085–1097PubMedCrossRefGoogle Scholar
  16. 16.
    Willig KI et al (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440(7086):935–939PubMedCrossRefGoogle Scholar
  17. 17.
    Ceccarelli B, Hurlbut WP, Mauro A (1973) Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J Cell Biol 57(2):499–524PubMedCrossRefGoogle Scholar
  18. 18.
    Fesce R et al (1994) Neurotransmitter release: fusion or ‘kiss-and-run’? Trends Cell Biol 4(1):1–4PubMedCrossRefGoogle Scholar
  19. 19.
    Heuser JE, Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57(2):315–344PubMedCrossRefGoogle Scholar
  20. 20.
    Fulop T, Radabaugh S, Smith C (2005) Activity-dependent differential transmitter release in mouse adrenal chromaffin cells. J Neurosci 25(32):7324–7332PubMedCrossRefGoogle Scholar
  21. 21.
    Gao X, Chan WC, Nie S (2002) Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J Biomed Opt 7(4):532–537PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang Q, Cao YQ, Tsien RW (2007) Quantum dots provide an optical signal specific to full collapse fusion of synaptic vesicles. Proc Natl Acad Sci U S A 104(45):17843–17848PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang Q, Li Y, Tsien RW (2009) The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science 323(5920):1448–1453PubMedCrossRefGoogle Scholar
  24. 24.
    Jackson MB, Chapman ER (2006) Fusion pores and fusion machines in Ca2+-triggered exocytosis. Annu Rev Biophys Biomol Struct 35:135–160PubMedCrossRefGoogle Scholar
  25. 25.
    Dahan M et al (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302(5644):442–445PubMedCrossRefGoogle Scholar
  26. 26.
    Liu G, Tsien RW (1995) Synaptic transmission at single visualized hippocampal boutons. Neuropharmacology 34(11):1407–1421PubMedCrossRefGoogle Scholar
  27. 27.
    Bonneau S, Dahan M, Cohen LD (2005) Single quantum dot tracking based on perceptual grouping using minimal paths in a spatiotemporal volume. IEEE Trans Image Process 14(9):1384–1395PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Qi Zhang
    • 1
  1. 1.Department of PharmacologyVanderbilt UniversityNashvilleUSA

Personalised recommendations