Nonradioactive In Vitro Assays for Histone Deacetylases

  • Alexander-Thomas Hauser
  • Julia M. Gajer (née Wagner)
  • Manfred Jung
Part of the Methods in Molecular Biology book series (MIMB, volume 981)


The effect of histone deacetylases (HDACs) on normal and aberrant gene expression has been studied widely, making these enzymes interesting targets for the treatment of cancer and other diseases. In this chapter, we present in vitro assays that are commonly used to detect HDAC activity that do not rely on radioactive substrates and are amenable for high-throughput testing in microtiter plates. The major focus is on in vitro screening, but we also provide protocols to monitor HDAC activity from cancer cells and peripheral white blood cells. We will discuss the advantages and drawbacks of the respective protocols and give general hints and suggestions that are valuable to obtain reliable and reproducible results.

Key words

Histone deacetylases In vitro assays Cellular assays Fluorescence-based assays 



Work on HDAC assays in blood cells is funded by the Deutsche Forschungsgemeinschaft (DFG, SPP1463, Ju 295/9-1).


  1. 1.
    Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260PubMedCrossRefGoogle Scholar
  2. 2.
    Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294PubMedCrossRefGoogle Scholar
  3. 3.
    Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412PubMedCrossRefGoogle Scholar
  4. 4.
    Yang XJ, Seto E (2008) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9:206–218PubMedCrossRefGoogle Scholar
  5. 5.
    Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA et al (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401:188–193PubMedCrossRefGoogle Scholar
  6. 6.
    Somoza JR, Skene RJ, Katz BA, Mol C, Ho JD, Jennings AJ et al (2004) Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure 12:1325–1334PubMedCrossRefGoogle Scholar
  7. 7.
    Smith JS, Avalos J, Celic I, Muhammad S, Wolberger C, Boeke JD (2002) SIR2 family of NAD(+)-dependent protein deacetylases. Methods Enzymol 353:282–300PubMedCrossRefGoogle Scholar
  8. 8.
    Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1:194–202PubMedCrossRefGoogle Scholar
  9. 9.
    Marks PA (2007) Discovery and development of SAHA as an anticancer agent. Oncogene 26:1351–1356PubMedCrossRefGoogle Scholar
  10. 10.
    Kolle D, Brosch G, Lechner T, Lusser A, Loidl P (1998) Biochemical methods for analysis of histone deacetylases. Methods 15:323–331PubMedCrossRefGoogle Scholar
  11. 11.
    Nare B, Allocco JJ, Kuningas R, Galuska S, Myers RW, Bednarek MA et al (1999) Development of a scintillation proximity assay for histone deacetylase using a biotinylated peptide derived from histone-H4. Anal Biochem 267:390–396PubMedCrossRefGoogle Scholar
  12. 12.
    Wegener D, Hildmann C, Riester D, Schober A, Meyer-Almes FJ, Deubzer H et al (2008) Identification of novel small-molecule histone deacetylase inhibitors by medium-throughput screening using a fluorogenic assay. Biochem J 413:143–150Google Scholar
  13. 13.
    Fenic I, Hossain HM, Sonnack V, Tchatalbachev S, Thierer F, Trapp J et al (2008) In vivo application of histone deacetylase inhibitor trichostatin-A impairs murine male meiosis. J Androl 29:172–185PubMedCrossRefGoogle Scholar
  14. 14.
    Garcia-Manero G, Assouline S, Cortes J, Estrov Z, Kantarjian H, Yang H et al (2008) Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia. Blood 112:981–989PubMedCrossRefGoogle Scholar
  15. 15.
    Sippl W, Jung M (eds) (2009) Epigenetic targets in drug discovery, 1st edn. Wiley-VCH, WeinheimGoogle Scholar
  16. 16.
    Hauser AT, Jung M, Jung M (2009) Assays for histone deacetylases. Curr Top Med Chem 9:227–234PubMedCrossRefGoogle Scholar
  17. 17.
    Hoffmann K, Brosch G, Loidl P, Jung M (1999) A non-isotopic assay for histone deacetylase activity. Nucleic Acids Res 27:2057–2058PubMedCrossRefGoogle Scholar
  18. 18.
    Heltweg B, Dequiedt F, Verdin E, Jung M (2003) A non isotopic substrate f or assaying both human zinc and NAD+-dependent histone deacetylases. Anal Biochem 319:42–48PubMedCrossRefGoogle Scholar
  19. 19.
    Hildmann C, Wegener D, Riester D, Hempel R, Schober A, Merana J et al (2006) Substrate and inhibitor specificity of class 1 and class 2 histone deacetylases. J Biotechnol 124:258–270PubMedCrossRefGoogle Scholar
  20. 20.
    Heltweg B, Dequiedt F, Marshall BL, Brauch C, Yoshida M, Nishino N et al (2004) Subtype selective substrates for histone deacetylases. J Med Chem 47:5235–5243PubMedCrossRefGoogle Scholar
  21. 21.
    Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ et al (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450:712–716PubMedCrossRefGoogle Scholar
  22. 22.
    Heltweg B, Jung M (2003) A homogeneous nonisotopic histone deacetylase activity assay. J Biomol Screen 8:89–95PubMedCrossRefGoogle Scholar
  23. 23.
    Heltweg B, Trapp J, Jung M (2005) In vitro assays for the determination of histone deacetylase activity. Methods 36:332–337PubMedCrossRefGoogle Scholar
  24. 24.
    Wegener D, Hildmann C, Riester D, Schwienhorst A (2003) Improved fluorogenic histone deacetylase assay for high-throughput screening applications. Anal Biochem 321:202–208PubMedCrossRefGoogle Scholar
  25. 25.
    Wegener D, Wirsching F, Riester D, Schwienhorst A (2003) A fluorogenic histone deacetylase assay well suited for high-throughput activity screening. Chem Biol 10:61–68PubMedCrossRefGoogle Scholar
  26. 26.
    Riester D, Wegener D, Hildmann C, Schwienhorst A (2004) Members of the histone deacetylase superfamily differ in substrate specificity towards small synthetic substrates. Biochem Biophys Res Commun 324:1116–1123PubMedCrossRefGoogle Scholar
  27. 27.
    Vannini A, Volpari C, Gallinari P, Jones P, Mattu M, Carfi A et al (2007) Substrate binding to histone deacetylases as shown by the crystal structure of the HDAC8-substrate complex. EMBO Rep 8:879–884PubMedCrossRefGoogle Scholar
  28. 28.
    Bonfils C, Kalita A, Dubay M, Siu LL, Carducci MA, Reid G et al (2008) Evaluation of the pharmacodynamic effects of MGCD0103 from preclinical models to human using a novel HDAC enzyme assay. Clin Cancer Res 14:3441–3449PubMedCrossRefGoogle Scholar
  29. 29.
    Burke TJ, Loniello KR, Beebe JA, Ervin KM (2003) Development and application of fluorescence polarization assays in drug discovery. Comb Chem High Throughput Screen 6:183–194PubMedCrossRefGoogle Scholar
  30. 30.
    Jameson DM, Croney JC (2003) Fluorescence polarization: past, present and future. Comb Chem High Throughput Screen 6:167–173PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Alexander-Thomas Hauser
    • 1
  • Julia M. Gajer (née Wagner)
    • 1
  • Manfred Jung
    • 1
    • 2
  1. 1.Institute of Pharmaceutical SciencesUniversity of FreiburgFreiburgGermany
  2. 2.Freiburg Institute of Advanced Studies (FRIAS)University of FreiburgFreiburgGermany

Personalised recommendations