Dictyostelium discoideum Protocols pp 367-382

Part of the Methods in Molecular Biology book series (MIMB, volume 983)

Micropipette Aspiration for Studying Cellular Mechanosensory Responses and Mechanics

Protocol

Abstract

Micropipette aspiration (MPA) is a widely applied method for studying cortical tension and deformability. Based on simple hydrostatic principles, this assay allows the application of a specific magnitude of mechanical stress on cells. This powerful method has revealed insights about cell mechanics and mechanosensing, not only in Dictyostelium discoideum but also in other cell types. In this chapter, we present how to set up a micropipette aspiration system and the experimental procedures for determining cortical tension and mechanosensory responses.

Key words

Micropipette aspiration Cell mechanics Cortical tension Mechanosensing Mechanosensory response 

References

  1. 1.
    Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10:21–33PubMedCrossRefGoogle Scholar
  2. 2.
    Lu D, Kassab GS (2011) Role of shear stress and stretch in vascular mechanobiology. J R Soc Interface 8:1379–1385PubMedCrossRefGoogle Scholar
  3. 3.
    Radmacher M, Fritz M, Kacher CM, Cleveland JP, Hansma PK (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J 70:556–567PubMedCrossRefGoogle Scholar
  4. 4.
    Dai J, Sheetz MP (1995) Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Biophys J 68:988–996PubMedCrossRefGoogle Scholar
  5. 5.
    Fukui Y, Yumura S, Yumura T, Mori H (1986) Agar overlay method: high-resolution immunofluorescence for the study of the contractile apparatus. Methods Enzymol 134:573–580PubMedCrossRefGoogle Scholar
  6. 6.
    Hochmuth RM (2000) Micropipette aspiration of living cells. J Biomech 33:15–22PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang W, Robinson DN (2005) Balance of actively generated contractile and resistive forces controls cytokinesis dynamics. Proc Natl Acad Sci USA 102:7186–7191PubMedCrossRefGoogle Scholar
  8. 8.
    Reichl EM, Ren Y, Morphew MK, Delannoy M, Effler JC, Girard KD, Divi S, Iglesias PA, Kuo SC, Robinson DN (2008) Interactions between myosin and actin crosslinkers control cytokinesis contractility dynamics and mechanics. Curr Biol 18:471–480PubMedCrossRefGoogle Scholar
  9. 9.
    Evans EA (1973) New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells. Biophys J 13:941–954PubMedCrossRefGoogle Scholar
  10. 10.
    Evans E, Yeung A (1989) Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J 56:151–160PubMedCrossRefGoogle Scholar
  11. 11.
    Jones WR, Ting-Beall HP, Lee GM, Kelley SS, Hochmuth RM, Guilak F (1999) Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J Biomech 32:119–127PubMedCrossRefGoogle Scholar
  12. 12.
    Larson SM, Lee HJ, Hung PH, Matthews LM, Robinson DN, Evans JP (2010) Cortical mechanics and meiosis II completion in mammalian oocytes are mediated by myosin-II and Ezrin-Radixin-Moesin (ERM) proteins. Mol Biol Cell 21:3182–3192PubMedCrossRefGoogle Scholar
  13. 13.
    Hiramoto Y (1963) Mechanical properties of sea urchin eggs II. Changes in mechanical properties from fertilization to cleavage. Exp Cell Res 32:76–88PubMedCrossRefGoogle Scholar
  14. 14.
    Wolpert L (1966) The mechanical properties of the membrane of the sea urchin egg during cleavage. Exp Cell Res 41:385–396PubMedCrossRefGoogle Scholar
  15. 15.
    Hiramoto Y (1990) Mechanical properties of the cortex before and during cleavage. Ann NY Acad Sci 582:22–30PubMedCrossRefGoogle Scholar
  16. 16.
    Gerald N, Dai J, Ting-Beall HP, DeLozanne A (1998) A role for Dictyostelium RacE in cortical tension and cleavage furrow progression. J Cell Biol 141:483–492PubMedCrossRefGoogle Scholar
  17. 17.
    Merkel R, Simson R, Simson DA, Hohenadl M, Boulbitch A, Wallraff E, Sackmann E (2000) A micromechanic study of cell polarity and plasma membrane cell body coupling in Dictyostelium. Biophys J 79:707–719PubMedCrossRefGoogle Scholar
  18. 18.
    Yang L, Effler JC, Kutscher BL, Sullivan SP, Robinson DN, Iglesias PA (2008) Modeling cellular deformations using the level set formalism. BMC Syst Biol 2:68PubMedCrossRefGoogle Scholar
  19. 19.
    Effler JC, Kee Y-S, Berk JM, Tran MN, Iglesias PA, Robinson DN (2006) Mitosis-specific mechanosensing and contractile protein redistribution control cell shape. Curr Biol 16:1962–1967PubMedCrossRefGoogle Scholar
  20. 20.
    Ren Y, Effler JC, Norstrom M, Luo T, Firtel RA, Iglesias PA, Rock RS, Robinson DN (2009) Mechanosensing through cooperative interactions between the motor myosin-II and the actin crosslinker cortexillin-I. Curr Biol 19:1421–1428PubMedCrossRefGoogle Scholar
  21. 21.
    Fernandez-Gonzalez R, Simoes Sde M, Roper JC, Eaton S, Zallen JA (2009) Myosin II dynamics are regulated by tension in intercalating cells. Dev Cell 17:736–743PubMedCrossRefGoogle Scholar
  22. 22.
    Kee Y-S, Ren Y, Dorfman D, Iijima M, Firtel RA, Iglesias PA, Robinson DN (2012) A mechanosensory system governs myosin II accumulation in dividing cells. Mol Biol Cell 23(8):1510–1523PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Department of Cell BiologyJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of BiophysicsJohns Hopkins UniversityBaltimoreUSA
  3. 3.Departments of Cell Biology, Pharmacology and Molecular Sciences, Chemical and Biomolecular EngineeringJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations