N-Glycomic and N-Glycoproteomic Studies in the Social Amoebae

  • Christa L. Feasley
  • Alba Hykollari
  • Katharina Paschinger
  • Iain B. H. Wilson
  • Christopher M. West
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 983)

Abstract

N-glycans modify the great majority of all secreted and plasma membrane proteins, which themselves constitute one-third to one-half of the proteome. The ultimate definition of the glycoproteome would be the identification of all the N-glycans attached to all the modified asparaginyl sites of all the proteins, but glycosylation heterogeneity makes this an unachievable goal. However, mass spectrometry in combination with other methods does have the power to deeply mine the N-glycome of Dictyostelium, and characterize glycan profiles at individual sites of glycoproteins. Recent studies from our laboratories using mass spectrometry-based methods have confirmed basic precepts of the N-glycome based on prior classical methods using radiotracer methods, and have extended the scope of glycan diversity and the distribution of glycan types across specific glycoprotein attachment sites. The protocols described here simplify studies of the N-glycome and -glycoproteome, which should prove useful for interpreting mutant phenotypes, conducting interstrain and interspecies comparisons, and investigating glycan functions in glycoproteins of interest.

Key words

Dictyostelium Glycosylation Glycome Glycoproteome Mass spectrometry Phosphoglycans Sulfated glycans 

References

  1. 1.
    Samuelson J, Banerjee S, Magnelli P, Cui J, Kelleher DJ, Gilmore R, Robbins PW (2005) The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases. Proc Natl Acad Sci U S A 102:1548–1553PubMedCrossRefGoogle Scholar
  2. 2.
    Ivatt RL, Das OP, Henderson EJ, Robbins PW (1984) Glycoprotein biosynthesis in Dictyostelium discoideum: developmental regulation of the protein-linked glycans. Cell 38:561–567PubMedCrossRefGoogle Scholar
  3. 3.
    Banerjee S, Vishwanath P, Cui J, Kelleher DJ, Gilmore R, Robbins PW, Samuelson J (2007) The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation. Proc Natl Acad Sci U S A 104:11676–11681PubMedCrossRefGoogle Scholar
  4. 4.
    West CM, Erdos GW, Davis R (1986) Glycoantigen expression is regulated both temporally and spatially during development in the cellular slime molds Dictyostelium discoideum and D. mucoroides. Mol Cell Biochem 72:121–140PubMedGoogle Scholar
  5. 5.
    Couso R, van Halbeek H, Reinhold V, Kornfeld S (1987) The high mannose oligosaccharides of Dictyostelium discoideum glycoproteins contain a novel intersecting N-acetylglucosamine residue. J Biol Chem 262:4521–4527PubMedGoogle Scholar
  6. 6.
    Amatayakul-Chantler S, Ferguson MAJ, Dwek RA, Rademacher TW, Parekh RB, Crandall IE, Newell PC (1991) Cell surface oligosaccharides in Dictyostelium during development. J Cell Sci 99:485–495Google Scholar
  7. 7.
    Nakagawa M, Tojo H, Fujii S (2011) A glycan of Psi-factor from Dictyostelium discoideum contains a bisecting-GlcNAc, an intersecting-GlcNAc, and a core α-1,6-fucose. Biosci Biotechnol Biochem 75:1964–1970PubMedCrossRefGoogle Scholar
  8. 8.
    Freeze HH (1997) Dictyostelium discoideum glycoproteins: using a model system for organismic glycobiology. In: Montreuil J, Vliegenthart JFG, Schachter H (eds) Glycoproteins II. Elsevier Science BV, pp 89–121PubMedCrossRefGoogle Scholar
  9. 9.
    Kang P, Mechref Y, Novotny MV (2008) High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Commun Mass Spectrom 22:721–734PubMedCrossRefGoogle Scholar
  10. 10.
    Srikrishna G, Wang L, Freeze HH (1998) Fucoseβ-1-P-Ser is a new type of glycosylation: using antibodies to identify a novel structure in Dictyostelium discoideum and study multiple types of fucosylation during growth and development. Glycobiology 8:799–811PubMedCrossRefGoogle Scholar
  11. 11.
    Qian Y, West CM, Kornfeld S (2011) UDP-GlcNAc:Glycoprotein N-acetylglucosamine-1-phosphotransferase mediates the initial step in the formation of the methylphosphomannosyl residues on the high mannose oligosaccharides of Dictyostelium discoideum glycoproteins. Biochem Biophys Res Commun 393:678–681CrossRefGoogle Scholar
  12. 12.
    Knecht DA, Dimond RL, Wheeler S, Loomis WF (1984) Antigenic determinants shared by lysosomal proteins of Dictyostelium discoideum. Characterization using monoclonal antibodies and isolation of mutations affecting the determinant. J Biol Chem 259:10633–10640PubMedGoogle Scholar
  13. 13.
    Lacoste CH, Freeze HH, Jones JA, Kaplan A (1989) Characteristics of the sulfation of N-linked oligosaccharides in vesicles from Dictyostelium discoideum: in vitro sulfation of lysosomal enzymes. Arch Biochem Biophys 273:505–515PubMedCrossRefGoogle Scholar
  14. 14.
    Freeze HH, Hindsgaul O, Ichikawa M (1992) A novel pathway for phosphorylated oligosaccharide biosynthesis. Identification of an oligosaccharide-specific phosphate methyltransferase in Dictyostelium discoideum. J Biol Chem 267:4431–4439PubMedGoogle Scholar
  15. 15.
    Sharkey DJ, Kornfeld R (1991) Developmental regulation of processing α-mannosidases and “intersecting” N-acetylglucosaminyltransferase in Dictyostelium discoideum. J Biol Chem 266:18477–18484PubMedGoogle Scholar
  16. 16.
    West CM, van der Wel H, Coutinho PM, Henrissat B (2005) Glycosyltransferase genomics in Dictyostelium discoideum. In: Loomis WF, Kuspa A (eds) Dictyostelium genomics. Horizon Scientific Press, Norfolk, pp 235–264Google Scholar
  17. 17.
    Sucgang R, Kuo A, Tian X, Salerno W, Parikh A, Feasley CL, Dalin E, Tu H, Huang E, Barry K, Lindquist E, Shapiro H, Bruce D, Schmutz J, Salamov A, Fey P, Gaudet P, Anjard C, Babu MM, Basu S, Bushmanova Y, van der Wel H, Katoh-Kurasawa M, Dinh C, Coutinho PM, Saito T, Elias M, Schaap P, Kay RR, Henrissat B, Eichinger L, Rivero F, Putnam NH, West CM, Loomis WF, Chisholm RL, Shaulsky G, Strassmann JE, Queller DC, Kuspa A, Grigoriev IV (2011) Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum. Genome Biol 12:R20PubMedCrossRefGoogle Scholar
  18. 18.
    Schiller B, Hykollari A, Voglmeir J, Pöltl G, Hummel K, Razzazi-Fazeli E, Geyer R, Wilson IBH (2009) Development of Dictyostelium discoideum is associated with alteration of fucosylated N-glycan structures. Biochem J 423:41–52PubMedCrossRefGoogle Scholar
  19. 19.
    Feasley CL, Johnson JM, West CM, Chia CP (2010) Glycopeptidome of a heavily N-glycosylated cell surface glycoprotein of Dictyostelium implicated in cell adhesion. J Proteome Res 9:3495–510PubMedCrossRefGoogle Scholar
  20. 20.
    Swanson SK, Florens L, Washburn MP (2009) Generation and analysis of multidimensional protein identification technology datasets. Methods Mol Biol 492:1–20PubMedCrossRefGoogle Scholar
  21. 21.
    Gao N (2005) Fluorophore-assisted ­carbohydrate electrophoresis: a sensitive and accurate method for the direct analysis of dolichol pyrophosphate-linked oligosaccharides in cell cultures and tissues. Methods 35:323–327PubMedCrossRefGoogle Scholar
  22. 22.
    Hase S, Ibuki T, Ikenaka T (1984) Reexamination of the pyridylamination used for fluorescence labeling of oligosaccharides and its application to glycoproteins. J Biochem 95:197–203PubMedGoogle Scholar
  23. 23.
    Paschinger K, Hykollari A, Razzazi-Fazeli E, Greenwell P, Leitsch D, Walochnik J, Wilson IBH (2012) The N-glycans of Trichomonas vaginalis contain variable core and antennal modifications. Glycobiology 22:300–313PubMedCrossRefGoogle Scholar
  24. 24.
    Ciucanu I, Costello CE (2003) Elimination of oxidative degradation during the per-O-methylation of carbohydrates. J Am Chem Soc 125:16213–16219PubMedCrossRefGoogle Scholar
  25. 25.
    Freeze HH, Etchison JR (1984) Presence of a nonlysosomal endo-β-N-acetylglucosaminidase in the cellular slime mold Dictyostelium discoideum. Arch Biochem Biophys 232:414–421PubMedCrossRefGoogle Scholar
  26. 26.
    Abbott DW, Macauley MS, Vocadlo DJ, Boraston AB (2009) Streptococcus pneumoniae endohexosaminidase D, structural and mechanistic insight into substrate-assisted catalysis in family 85 glycoside hydrolases. J Biol Chem 284:11676–11689PubMedCrossRefGoogle Scholar
  27. 27.
    Buser R, Lazar Z, Käser S, Künzler M, Aebi M (2010) Identification, characterization, and biosynthesis of a novel N-glycan modification in the fruiting body of the basidiomycete Coprinopsis cinerea. J Biol Chem 285:10715–10723PubMedCrossRefGoogle Scholar
  28. 28.
    Tomiya N, Awaya J, Kurono M, Endo S, Arata Y, Takahashi N (1988) Analyses of N-linked oligosaccharides using a two-dimensional mapping technique. Anal Biochem 171:73–90PubMedCrossRefGoogle Scholar
  29. 29.
    Paschinger K, Razzazi-Fazeli E, Furukawa K, Wilson IBH (2011) Presence of galactosylated core fucose on N-glycans in the planaria Dugesia japonica. J Mass Spectrom 46:561–567PubMedCrossRefGoogle Scholar
  30. 30.
    Pöltl G, Kerner D, Paschinger K, Wilson IBH (2007) N-glycans of the porcine nematode parasite Ascaris suum are modified with phosphorylcholine and core fucose residues. FEBS J 274:714–726PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Christa L. Feasley
    • 1
  • Alba Hykollari
    • 2
  • Katharina Paschinger
    • 2
  • Iain B. H. Wilson
    • 2
  • Christopher M. West
    • 1
  1. 1.Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical GlycobiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.Department für ChemieUniversität für BodenkulturViennaAustria

Personalised recommendations