A Guide to Integrating Transcriptional Regulatory and Metabolic Networks Using PROM (Probabilistic Regulation of Metabolism)

  • Evangelos Simeonidis
  • Sriram Chandrasekaran
  • Nathan D. Price
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 985)

Abstract

The integration of transcriptional regulatory and metabolic networks is a crucial step in the process of predicting metabolic behaviors that emerge from either genetic or environmental changes. Here, we present a guide to PROM (probabilistic regulation of metabolism), an automated method for the construction and simulation of integrated metabolic and transcriptional regulatory networks that enables large-scale phenotypic predictions for a wide range of model organisms.

Key words

Systems biology Metabolic networks Transcriptional regulatory networks Constraint-based modeling Probabilistic regulation of metabolism Microarray data 

References

  1. 1.
    Lazebnik Y (2002) Can a biologist fix a radio? Or, what I learned while studying apoptosis. Cancer Cell 2(3):179–182CrossRefGoogle Scholar
  2. 2.
    Mendes P, Kell D (1998) Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14(10):869–883. doi:10.1093/bioinformatics/14.10.869 CrossRefGoogle Scholar
  3. 3.
    Szallasi Z, Stelling J, Periwal V (2006) System modeling in cellular biology: from concepts to nuts and bolts, 1st edn. The MIT Press, BostonGoogle Scholar
  4. 4.
    Covert MW, Famili I, Palsson BO (2003) Identifying constraints that govern cell behavior: a key to converting conceptual to computational models in biology? Biotechnol Bioeng 84(7):763–772. doi:Doi10.1002/Bit.10849 CrossRefGoogle Scholar
  5. 5.
    Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2(11):886–897. doi:Doi10.1038/Nrmicro1023 CrossRefGoogle Scholar
  6. 6.
    Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14(5):491–496. doi:Doi10.1016/j.copbio.2003.08.001 CrossRefGoogle Scholar
  7. 7.
    Chandrasekaran S, Price ND (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 107(41):17845–17850. doi:Doi10.1073/pnas.1005139107 CrossRefGoogle Scholar
  8. 8.
    Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature 429(6987):92–96CrossRefGoogle Scholar
  9. 9.
    Herrgard MJ, Lee BS, Portnoy V, Palsson BO (2006) Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res 16(5):627–635. doi:Doi10.1101/Gr.4083206 CrossRefGoogle Scholar
  10. 10.
    Covert MW, Schilling CH, Palsson B (2001) Regulation of gene expression in flux balance models of metabolism. J Theor Biol 213(1):73–88. doi:Doi10.1006/jtbi.2001.2405 CrossRefGoogle Scholar
  11. 11.
    Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5(4):264–276. doi:Doi10.1016/j.ymben.2003.09.002 CrossRefGoogle Scholar
  12. 12.
    Young IT (1977) Proof without prejudice—Use of Kolmogorov-Smirnov test for analysis of histograms from flow systems and other sources. J Histochem Cytochem 25(7):935–941CrossRefGoogle Scholar
  13. 13.
    Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7(2):129–143. doi:Doi10.1038/Nrmicro1949 Google Scholar
  14. 14.
    Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D (2007) How to infer gene networks from expression profiles. Mol Syst Biol 3:122. doi:Artn 78.doi: Doi 10.1038/Msb4100120Google Scholar
  15. 15.
    Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Pan ZJ, Schilstra MJ, Clarke PJC, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H (2002) A genomic regulatory network for development. Science 295(5560):1669–1678CrossRefGoogle Scholar
  16. 16.
    Schlitt T, Brazma A (2007) Current approaches to gene regulatory network modelling. BMC Bioinformatics 8. doi:Artn S9. doi: Doi 10.1186/1471-2105-8-S6-S9Google Scholar
  17. 17.
    Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31(1):64–68. doi:Doi10.1038/Ng881 CrossRefGoogle Scholar
  18. 18.
    Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298(5594):799–804CrossRefGoogle Scholar
  19. 19.
    Chandrasekaran S, Ament SA, Eddy JA, Rodriguez-Zas SL, Schatz BR, Price ND, Robinson GE (2011) Behavior-specific changes in transcriptional modules lead to distinct and predictable neurogenomic states. Proc Natl Acad Sci U S A 108(44):18020–18025. doi:Doi10.1073/pnas.1114093108 CrossRefGoogle Scholar
  20. 20.
    Shmulevich I, Dougherty ER, Kim S, Zhang W (2002) Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2):261–274CrossRefGoogle Scholar
  21. 21.
    Shlomi T, Cabili MN, Herrgard MJ, Palsson BO, Ruppin E (2008) Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 26(9):1003–1010. doi:Doi10.1038/Nbt.1487 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Evangelos Simeonidis
    • 1
    • 2
  • Sriram Chandrasekaran
    • 2
    • 3
  • Nathan D. Price
    • 2
  1. 1.Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch-sur-AlzetteLuxembourg
  2. 2.Institute for Systems BiologySeattleUSA
  3. 3.Center for Biophysics and Computational BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations