Using Multiple Tracers for 13C Metabolic Flux Analysis

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 985)

Abstract

13C-Metabolic flux analysis (13C-MFA) is a powerful technique for quantifying intracellular metabolic fluxes in living cells. These in vivo fluxes provide important information on the physiology of cells in culture, which can be used for metabolic engineering purposes and serve as inputs for systems biology modeling. The 13C-MFA technique consists of several steps: (1) selecting appropriate tracers for a given system of interest, (2) performing isotopic labeling experiments, (3) measuring isotopic labeling distributions in metabolic products, (4) estimating metabolic fluxes using least-squares regression, and (5) evaluating the goodness of fit and computing confidence intervals for estimated fluxes. In this chapter, we provide guidelines for performing 13C-MFA studies using multiple isotopic tracers, a technique that is especially useful for elucidating fluxes in complex biological systems where multiple carbon sources are present. Here, as an example, we describe key steps and decision points for designing 13C-MFA studies for microbes grown on mixtures of glucose and xylose. The general concepts described in this chapter are applicable to many other biological systems. For example, the same procedures can be applied to design 13C-MFA studies in mammalian cells, which are generally grown in complex media containing multiple substrates such as glucose and amino acids.

Key words

Fluxomics Metabolism Tracer experiment Metabolic engineering Metabolic network model Systems biology Metabolic flux Biological modeling Experiment design Isotopomer 

References

  1. 1.
    Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11CrossRefGoogle Scholar
  2. 2.
    Moxley JF, Jewett MC, Antoniewicz MR et al (2009) Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Proc Natl Acad Sci U S A 106:6477–6482CrossRefGoogle Scholar
  3. 3.
    Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9:68–86CrossRefGoogle Scholar
  4. 4.
    Leighty RW, Antoniewicz MR (2011) Dynamic metabolic flux analysis (DMFA): a framework for determining fluxes at metabolic non-steady state. Metab Eng 13:745–755CrossRefGoogle Scholar
  5. 5.
    Niklas J, Schneider K, Heinzle E (2010) Metabolic flux analysis in eukaryotes. Curr Opin Biotechnol 21:63–69CrossRefGoogle Scholar
  6. 6.
    Crown SB, Ahn WS, Antoniewicz MR (2012) Rational design of 13C-labeling experiments for metabolic flux analysis in mammalian cells. BMC Syst Biol 6:43CrossRefGoogle Scholar
  7. 7.
    Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis. Anal Chem 79:7554–7559CrossRefGoogle Scholar
  8. 8.
    Antoniewicz MR, Kelleher JK, Stephanopoulos G (2006) Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab Eng 8:324–337CrossRefGoogle Scholar
  9. 9.
    Young JD, Walther JL, Antoniewicz MR et al (2008) An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnol Bioeng 99:686–699CrossRefGoogle Scholar
  10. 10.
    Crown SB, Antoniewicz MR (2012) Selection of tracers for (13)C-Metabolic Flux Analysis using Elementary Metabolite Units (EMU) basis vector methodology. Metab Eng 14:150–161CrossRefGoogle Scholar
  11. 11.
    Yoo H, Stephanopoulos G, Kelleher JK (2004) Quantifying carbon sources for de novo lipogenesis in wild-type and IRS-1 knockout brown adipocytes. J Lipid Res 45:1324–1332CrossRefGoogle Scholar
  12. 12.
    Stephanopoulos G (2008) Metabolic engineering: enabling technology for biofuels production. Metab Eng 10:293–294CrossRefGoogle Scholar
  13. 13.
    Metallo CM, Walther JL, Stephanopoulos G (2009) Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J Biotechnol 144:167–174CrossRefGoogle Scholar
  14. 14.
    Wittmann C, Heinzle E (2001) Modeling and experimental design for metabolic flux analysis of lysine-producing Corynebacteria by mass spectrometry. Metab Eng 3:173–191CrossRefGoogle Scholar
  15. 15.
    van Winden WA, Heijnen JJ, Verheijen PJ et al (2001) A priori analysis of metabolic flux identifiability from (13)C-labeling data. Biotechnol Bioeng 74:505–516CrossRefGoogle Scholar
  16. 16.
    Walther JL, Metallo CM, Zhang J et al (2012) Optimization of (13)C isotopic tracers for metabolic flux analysis in mammalian cells. Metab Eng 14:162–171CrossRefGoogle Scholar
  17. 17.
    Szyperski T, Glaser RW, Hochuli M et al (1999) Bioreaction network topology and metabolic flux ratio analysis by biosynthetic fractional 13C labeling and two-dimensional NMR spectroscopy. Metab Eng 1:189–197CrossRefGoogle Scholar
  18. 18.
    Iwatani S, Van Dien S, Shimbo K et al (2007) Determination of metabolic flux changes during fed-batch cultivation from measurements of intracellular amino acids by LC-MS/MS. J Biotechnol 128:93–111CrossRefGoogle Scholar
  19. 19.
    Antoniewicz MR, Kelleher JK, Stephanopoulos G (2011) Measuring deuterium enrichment of glucose hydrogen atoms by gas chromatography/mass spectrometry. Anal Chem 83:3211–3216CrossRefGoogle Scholar
  20. 20.
    van Winden W, Schipper D, Verheijen P et al (2001) Innovations in generation and analysis of 2D [(13)C, (1)H] COSY NMR spectra for metabolic flux analysis purposes. Metab Eng 3:322–343CrossRefGoogle Scholar
  21. 21.
    Ahn WS, Antoniewicz MR (2011) Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metab Eng 13:598–609CrossRefGoogle Scholar
  22. 22.
    Antoniewicz MR, Kraynie DF, Laffend LA et al (2007) Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. Metab Eng 9:277–292CrossRefGoogle Scholar
  23. 23.
    Choi J, Antoniewicz MR (2011) Tandem mass spectrometry: a novel approach for metabolic flux analysis. Metab Eng 13:225–233CrossRefGoogle Scholar
  24. 24.
    Jeffrey FM, Roach JS, Storey CJ et al (2002) 13C isotopomer analysis of glutamate by tandem mass spectrometry. Anal Biochem 300:192–205CrossRefGoogle Scholar
  25. 25.
    Choi J, Grossbach MT, Antoniewicz MR (2012) Measuring complete isotopomer distribution of aspartate using gas chromatography/tandem mass spectrometry. Anal Chem 84:4628–4632CrossRefGoogle Scholar
  26. 26.
    Ahn WS, Antoniewicz MR (2012) Towards dynamic metabolic flux analysis in CHO cell cultures. Biotechnol J 7:61–74CrossRefGoogle Scholar
  27. 27.
    Deshpande R, Yang TH, Heinzle E (2009) Towards a metabolic and isotopic steady state in CHO batch cultures for reliable isotope-based metabolic profiling. Biotechnol J 4:247–263CrossRefGoogle Scholar
  28. 28.
    Costenoble R, Muller D, Barl T et al (2007) 13C-Labeled metabolic flux analysis of a fed-batch culture of elutriated Saccharomyces cerevisiae. FEMS Yeast Res 7:511–526CrossRefGoogle Scholar
  29. 29.
    Crown SB, Indurthi DC, Ahn WS et al (2011) Resolving the TCA cycle and pentose-phosphate pathway of Clostridium acetobutylicum ATCC 824: isotopomer analysis, in vitro activities and expression analysis. Biotechnol J 6:300–305CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Metabolic Engineering and Systems Biology Laboratory, Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkUSA

Personalised recommendations