Homeostatic Proliferation of Mature T Cells

  • Christopher E. Martin
  • Kwesi Frimpong-Boateng
  • Darina S. Spasova
  • John C. Stone
  • Charles D. Surh
Part of the Methods in Molecular Biology book series (MIMB, volume 979)


Under normal circumstances, the secondary lymphoid tissues contain a predictable number of T cells with a diverse T cell receptor (TCR) repertoire. Such a T cell pool must be of sufficient size to confer maximum protection of the host from infectious pathogens and cancer, but small enough not to overburden the host. The T cell pool is maintained by a combination of de novo T cell production by the thymus and by the long-term survival and gradual turnover of mature T cells in the periphery. The latter process, termed homeostatic proliferation, has been intensely investigated over the past 20 years, and a few techniques have been developed to facilitate these studies. In this chapter, we describe the experimental procedures that allow conspicuous visualization of homeostatic proliferation, which have been instrumental in facilitating recent advances in the study of T cell homeostasis.

Key words

CFSE CellTrace Violet Cell Proliferation Dye eFluor 670 T cell proliferation CD45 CD90 Lymphopenic mice 


  1. 1.
    Ernst B, Lee DS, Chang JM, Sprent J, Surh CD (1999) The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11:173–181PubMedCrossRefGoogle Scholar
  2. 2.
    Murali-Krishna K, Ahmed R (2000) Cutting edge: naive T cells masquerading as memory cells. J Immunol 165:1733–1737PubMedGoogle Scholar
  3. 3.
    Schluns KS, Kieper WC, Jameson SC, Lefrancois L (2000) Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol 1:426–432PubMedCrossRefGoogle Scholar
  4. 4.
    Tan JT, Ernst B, Kieper WC, LeRoy E, Sprent J, Surh CD (2002) Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J Exp Med 195:1523–1532PubMedCrossRefGoogle Scholar
  5. 5.
    Goldrath AW, Sivakumar PV, Glaccum M, Kennedy MK, Bevan MJ, Benoist C, Mathis D, Butz EA (2002) Cytokine requirements for acute and basal homeostatic proliferation of naive and memory CD8+ T cells. J Exp Med 195:1515–1522PubMedCrossRefGoogle Scholar
  6. 6.
    Baccala R, Witherden D, Gonzalez-Quintial R, Dummer W, Surh CD, Havran WL, Theofilopoulos AN (2005) Gamma delta T cell homeostasis is controlled by IL-7 and IL-15 together with subset-specific factors. J Immunol 174:4606–4612PubMedGoogle Scholar
  7. 7.
    French JD, Roark CL, Born WK, O’Brien RL (2005) {gamma} {delta} T cell homeostasis is established in competition with {alpha} {beta} T cells and NK cells. Proc Natl Acad Sci U S A 102:14741–14746PubMedCrossRefGoogle Scholar
  8. 8.
    Matsuda JL, Gapin L, Sidobre S, Kieper WC, Tan JT, Ceredig R, Surh CD, Kronenberg M (2002) Homeostasis of V alpha 14i NKT cells. Nat Immunol 3:966–974PubMedCrossRefGoogle Scholar
  9. 9.
    Ranson T, Vosshenrich CA, Corcuff E, Richard O, Laloux V, Lehuen A, Di Santo JP (2003) IL-15 availability conditions homeostasis of peripheral natural killer T cells. Proc Natl Acad Sci U S A 100:2663–2668PubMedCrossRefGoogle Scholar
  10. 10.
    Koka R, Burkett PR, Chien M, Chai S, Chan F, Lodolce JP, Boone DL, Ma A (2003) Interleukin (IL)-15R[alpha]-deficient natural killer cells survive in normal but not IL-15R[alpha]-deficient mice. J Exp Med 197:977–984PubMedCrossRefGoogle Scholar
  11. 11.
    Prlic M, Blazar BR, Farrar MA, Jameson SC (2003) In vivo survival and homeostatic proliferation of natural killer cells. J Exp Med 197:967–976PubMedCrossRefGoogle Scholar
  12. 12.
    Ranson T, Vosshenrich CA, Corcuff E, Richard O, Muller W, Di Santo JP (2003) IL-15 is an essential mediator of peripheral NK-cell homeostasis. Blood 101:4887–4893PubMedCrossRefGoogle Scholar
  13. 13.
    Jamieson AM, Isnard P, Dorfman JR, Coles MC, Raulet DH (2004) Turnover and proliferation of NK cells in steady state and lymphopenic conditions. J Immunol 172:864–870PubMedGoogle Scholar
  14. 14.
    Purton JF, Tan JT, Rubinstein MP, Kim DM, Sprent J, Surh CD (2007) Antiviral CD4+ memory T cells are IL-15 dependent. J Exp Med 204:951–961PubMedCrossRefGoogle Scholar
  15. 15.
    Sprent J, Surh CD (2011) Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nat Immunol 12: 478–484PubMedCrossRefGoogle Scholar
  16. 16.
    Michalek RD, Rathmell JC (2010) The metabolic life and times of a T-cell. Immunol Rev 236:190–202PubMedCrossRefGoogle Scholar
  17. 17.
    Osborne LC, Abraham N (2010) Regulation of memory T cells by gammac cytokines. Cytokine 50:105–113PubMedCrossRefGoogle Scholar
  18. 18.
    Takada K, Jameson SC (2009) Naive T cell homeostasis: from awareness of space to a sense of place. Nat Rev Immunol 9:823–832PubMedCrossRefGoogle Scholar
  19. 19.
    Surh CD, Sprent J (2008) Homeostasis of naive and memory T cells. Immunity 29:848–862PubMedCrossRefGoogle Scholar
  20. 20.
    Rochman Y, Spolski R, Leonard WJ (2009) New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol 9:480–490PubMedCrossRefGoogle Scholar
  21. 21.
    van Leeuwen EM, Sprent J, Surh CD (2009) Generation and maintenance of memory CD4(+) T Cells. Curr Opin Immunol 21:167–172PubMedCrossRefGoogle Scholar
  22. 22.
    Parish CR (1999) Fluorescent dyes for lymphocyte migration and proliferation studies. Immunol Cell Biol 77:499–508PubMedCrossRefGoogle Scholar
  23. 23.
    Shapiro HM, John Wiley and Sons (2003) Practical flow cytometry. Wiley-Liss, New York, pp 371–374Google Scholar
  24. 24.
    Bantly AD, Gray BD, Breslin E, Weinstein EG, Muirhead KA, Ohlsson-Wilhelm BM, Moore JS (2007) Cell Vue Claret, a new far-red dye, facilitates polychromatic assessment of immune cell proliferation. Immunol Invest 36: 581–605PubMedCrossRefGoogle Scholar
  25. 25.
    Yen MH, Lepak N, Swain SL (2002) Induction of CD4 T cell changes in murine AIDS is dependent on costimulation and involves a dysregulation of homeostasis. J Immunol 169: 722–731PubMedGoogle Scholar
  26. 26.
    Hawkins ED, Hommel M, Turner ML, Battye FL, Markham JF, Hodgkin PD (2007) Measuring lymphocyte proliferation, survival and differentiation using CFSE time-series data. Nat Protoc 2:2057–2067PubMedCrossRefGoogle Scholar
  27. 27.
    Quah BJ, Warren HS, Parish CR (2007) Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat Protoc 2:2049–2056PubMedCrossRefGoogle Scholar
  28. 28.
    Kieper WC, Troy A, Burghardt JT, Ramsey C, Lee JY, Jiang HQ, Dummer W, Shen H, Cebra JJ, Surh CD (2005) Recent immune status determines the source of antigens that drive homeostatic T cell expansion. J Immunol 174:3158–3163PubMedGoogle Scholar
  29. 29.
    Min B, Yamane H, Hu-Li J, Paul WE (2005) Spontaneous and homeostatic proliferation of CD4 T cells are regulated by different mechanisms. J Immunol 174:6039–6044PubMedGoogle Scholar
  30. 30.
    Tsunobuchi H, Nishimura H, Goshima F, Daikoku T, Nishiyama Y, Yoshikai Y (2000) Memory-type CD8+ T cells protect IL-2 receptor alpha-deficient mice from systemic infection with herpes simplex virus type 2. J Immunol 165:4552–4560PubMedGoogle Scholar
  31. 31.
    Cho JH, Boyman O, Kim HO, Hahm B, Rubinstein MP, Ramsey C, Kim DM, Surh CD, Sprent J (2007) An intense form of homeostatic proliferation of naive CD8+ cells driven by IL-2. J Exp Med 204:1787–1801PubMedCrossRefGoogle Scholar
  32. 32.
    Ramsey C, Rubinstein MP, Kim DM, Cho JH, Sprent J, Surh CD (2008) The lymphopenic environment of CD132 (common gamma-chain)-deficient hosts elicits rapid homeostatic proliferation of naive T cells via IL-15. J Immunol 180:5320–5326PubMedGoogle Scholar
  33. 33.
    Guimond M, Veenstra RG, Grindler DJ, Zhang H, Cui Y, Murphy RD, Kim SY, Na R, Hennighausen L, Kurtulus S, Erman B, Matzinger P, Merchant MS, Mackall CL (2009) Interleukin 7 signaling in dendritic cells regulates the homeostatic proliferation and niche size of CD4+ T cells. Nat Immunol 10:149–157PubMedCrossRefGoogle Scholar
  34. 34.
    Martin CE, Kim DM, Sprent J, Surh CD (2010) Is IL-7 from dendritic cells essential for the homeostasis of CD4+ T cells? Nat Immunol 11:547–548, author reply 8PubMedCrossRefGoogle Scholar
  35. 35.
    Asavaroengchai W, Kotera Y, Mule JJ (2002) Tumor lysate-pulsed dendritic cells can elicit an effective antitumor immune response during early lymphoid recovery. Proc Natl Acad Sci U S A 99:931–936PubMedCrossRefGoogle Scholar
  36. 36.
    Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854PubMedCrossRefGoogle Scholar
  37. 37.
    Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, Reisfeld RA, Theofilopoulos AN (2002) T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest 110:185–192PubMedGoogle Scholar
  38. 38.
    Melchionda F, Fry TJ, Milliron MJ, McKirdy MA, Tagaya Y, Mackall CL (2005) Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J Clin Invest 115:1177–1187PubMedGoogle Scholar
  39. 39.
    Pellegrini M, Calzascia T, Elford AR, Shahinian A, Lin AE, Dissanayake D, Dhanji S, Nguyen LT, Gronski MA, Morre M, Assouline B, Lahl K, Sparwasser T, Ohashi PS, Mak TW (2009) Adjuvant IL-7 antagonizes multiple cellular and molecular inhibitory networks to enhance immunotherapies. Nat Med 15:528–536PubMedCrossRefGoogle Scholar
  40. 40.
    Ferreira C, Barthlott T, Garcia S, Zamoyska R, Stockinger B (2000) Differential survival of naive CD4 and CD8 T cells. J Immunol 165:3689–3694PubMedGoogle Scholar
  41. 41.
    McFarland HI, Rosenberg AS (2009) Skin allograft rejection. In: John E. Coligan et al. (eds) Current protocols in immunology.  Chapter 4: Unit 4
  42. 42.
    Hathcock KS (2001) T cell depletion by cytotoxic elimination. Curr Protoc Immunol.  Chapter 3: Unit 3 4
  43. 43.
    Dunn TB (1954) Normal and pathologic ­anatomy of the reticular tissue in laboratory mice, with a classification and discussion of neoplasms. J Natl Cancer Inst 14:1281–1433PubMedGoogle Scholar
  44. 44.
    Van den Broeck W, Derore A, Simoens P (2006) Anatomy and nomenclature of murine lymph nodes: descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J Immunol Methods 312:12–19PubMedCrossRefGoogle Scholar
  45. 45.
    Dummer W, Ernst B, LeRoy E, Lee D, Surh C (2001) Autologous regulation of naive T cell homeostasis within the T cell compartment. J Immunol 166:2460–2468PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Christopher E. Martin
    • 1
    • 2
  • Kwesi Frimpong-Boateng
    • 1
    • 2
  • Darina S. Spasova
    • 1
    • 2
  • John C. Stone
    • 2
  • Charles D. Surh
    • 3
  1. 1.Doctoral Program in Chemical and Biological Sciences, Kellogg School of Science and Technology, The Scripps Research InstituteLa JollaUSA
  2. 2.Department of Immunology and Microbial ScienceThe Scripps Research InstituteLa JollaUSA
  3. 3.Academy of Immunology and Microbiology (AIM), Institute of Basic Science (IBS) Pohang University of Science and Technology (POSTECH)PohangRepublic of Korea

Personalised recommendations