Heavy Methyl-SILAC Labeling Coupled with Liquid Chromatography and High-Resolution Mass Spectrometry to Study the Dynamics of Site-Specific Histone Methylation

  • Xing-Jun Cao
  • Barry M. Zee
  • Benjamin A. Garcia
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 977)

Abstract

Histone lysine and arginine methylation involved in gene activation and silencing is dynamically regulated. However, partly limited to the research technologies previously available, the dynamics of global histone methylation on a site-specific basis have not been fully pursued. Heavy methyl-SILAC (Stable Isotope Labeling of Amino Acids in Cell Culture) labeling provides a remarkable signpost to distinguish the preexisting and newly generated methyl marks on histones. Using this technology coupled with quantitative LC-MS analysis make it possible to monitor changes in the dynamics of histone site-specific methylation. In this chapter, we comprehensively describe the experimental strategy to determine the dynamics of multiple histone methylated residues including SILAC labeling, histone extraction/purification and mass spectrometry analysis.

Key words

Histone Methylation Dynamics Heavy methionine SILAC Quantitation Mass spectrometry 

Notes

Acknowledgments

B.A.G. gratefully acknowledges funding from a National Science Foundation grant (CBET-0941143), an Agilent Thought Leader award, an NSF Early Faculty CAREER award, and an NIH Innovator award (DP2OD007447) from the Office Of The Director, NIH.

References

  1. 1.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705PubMedCrossRefGoogle Scholar
  2. 2.
    Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45PubMedCrossRefGoogle Scholar
  3. 3.
    Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080PubMedCrossRefGoogle Scholar
  4. 4.
    Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, Shinkai Y, Allis CD (2003) Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 12:1591–1598PubMedCrossRefGoogle Scholar
  5. 5.
    Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y (2006) JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125:483–495PubMedCrossRefGoogle Scholar
  6. 6.
    Klose RJ, Yamane K, Bae Y, Zhang D, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y (2006) The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442:312–316PubMedCrossRefGoogle Scholar
  7. 7.
    Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS, Kouzarides T, Schreiber SL (2002) Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci USA 99:8695–8700PubMedCrossRefGoogle Scholar
  8. 8.
    Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL, Strahl BD (2005) A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol 25:3305–3316PubMedCrossRefGoogle Scholar
  9. 9.
    Steger DJ, Lefterova MI, Ying L, Stonestrom AJ, Schupp M, Zhuo D, Vakoc AL, Kim JE, Chen J, Lazar MA, Blobel GA, Vakoc CR (2008) DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol Cell Biol 28:2825–2839PubMedCrossRefGoogle Scholar
  10. 10.
    Tschiersch B, Hofmann A, Krauss V, Dorn R, Korge G, Reuter G (1994) The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J 13:3822–3831PubMedGoogle Scholar
  11. 11.
    Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298:1039–1043PubMedCrossRefGoogle Scholar
  12. 12.
    Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18:1251–1262PubMedCrossRefGoogle Scholar
  13. 13.
    Kirmizis A, Santos-Rosa H, Penkett CJ, Singer MA, Green RD, Kouzarides T (2009) Distinct transcriptional outputs associated with mono- and dimethylated histone H3 arginine 2. Nat Struct Mol Biol 16:449–451PubMedCrossRefGoogle Scholar
  14. 14.
    Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953PubMedCrossRefGoogle Scholar
  15. 15.
    Thomas G, Lange HW, Hempel K (1975) Kinetics of histone methylation in vivo and its relation to the cell cycle in Ehrlich ascites tumor cells. Eur J Biochem 51:609–615PubMedCrossRefGoogle Scholar
  16. 16.
    Pesavento JJ, Yang H, Kelleher NL, Mizzen CA (2008) Certain and progressive methylation of histone H4 at lysine 20 during the cell cycle. Mol Cell Biol 28:468–486PubMedCrossRefGoogle Scholar
  17. 17.
    McManus KJ, Biron VL, Heit R, Underhill DA, Hendzel MJ (2006) Dynamic changes in histone H3 lysine 9 methylations: identification of a mitosis-specific function for dynamic methylation in chromosome congression and segregation. J Biol Chem 281:8888–8897PubMedCrossRefGoogle Scholar
  18. 18.
    Waterborg JH (1993) Dynamic methylation of alfalfa histone H3. J Biol Chem 268:4918–4921PubMedGoogle Scholar
  19. 19.
    Zee BM, Levin RS, Xu B, LeRoy G, Wingreen NS, Garcia BA (2010) In vivo residue-specific histone methylation dynamics. J Biol Chem 285:3341–3350PubMedCrossRefGoogle Scholar
  20. 20.
    Plazas-Mayorca MD, Zee BM, Young NL, Fingerman IM, LeRoy G, Briggs SD, Garcia BA (2009) One-pot shotgun quantitative mass spectrometry characterization of histones. J Proteome Res 8:5367–5374PubMedCrossRefGoogle Scholar
  21. 21.
    Pedrioli PG, Eng JK, Hubley R, Vogelzang M, Deutsch EW, Raught B, Pratt B, Nilsson E, Angeletti RH, Apweiler R, Cheung K, Costello CE, Hermjakob H, Huang S, Julian RK, Kapp E, McComb ME, Oliver SG, Omenn G, Paton NW, Simpson R, Smith R, Taylor CF, Zhu W, Aebersold R (2004) A common open representation of mass spectrometry data and its application to proteomics research. Nat Biotechnol 22:1459–1466PubMedCrossRefGoogle Scholar
  22. 22.
    Murray K (1966) The acid extraction of histones from calf thymus deoxyribonucleoprotein. J Mol Biol 15:409–419PubMedCrossRefGoogle Scholar
  23. 23.
    Shechter D, Dormann HL, Allis CD, Hake SB (2007) Extraction, purification and analysis of histones. Nat Protoc 2:1445–1457PubMedCrossRefGoogle Scholar
  24. 24.
    Garcia BA, Mollah S, Ueberheide BM, Busby SA, Muratore TL, Shabanowitz J, Hunt DF (2007) Chemical derivatization of histones for facilitated analysis by mass spectrometry. Nat Protoc 2:933–938PubMedCrossRefGoogle Scholar
  25. 25.
    Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75:663–670PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Xing-Jun Cao
    • 1
  • Barry M. Zee
    • 1
  • Benjamin A. Garcia
    • 1
  1. 1.Department of Molecular BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations