Array Comparative Genomic Hybridization pp 39-54

Part of the Methods in Molecular Biology book series (MIMB, volume 973)

Epigenomics: Sequencing the Methylome

Abstract

DNA methylation patterns are increasingly surveyed through methods that utilize massively parallel sequencing. Sequence-based assays developed to detect DNA methylation can be broadly divided into those that depend on affinity enrichment, chemical conversion, or enzymatic restriction. The DNA fragments resulting from these methods are uniformly subjected to library construction and massively parallel sequencing. The sequence reads are subsequently aligned to a reference genome and subjected to specialized analytical tools to extract the underlying methylation signature. This chapter will outline these emerging techniques.

Key words

Epigenetics Epigenomics DNA methylation Massively parallel sequencing 

References

  1. 1.
    Fraga MF, Ballestar E, Paz MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102(30):10604–10609PubMedCrossRefGoogle Scholar
  2. 2.
    Humpherys D, Eggan K, Akutsu H et al (2001) Epigenetic instability in ES cells and cloned mice. Science 293(5527):95–97PubMedCrossRefGoogle Scholar
  3. 3.
    Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159PubMedCrossRefGoogle Scholar
  4. 4.
    Waddington C (1942) The pupil contraction as an epigenetic crisis in drosophila. Proc Zool Soc Lond A111(3–4):181–188Google Scholar
  5. 5.
    Waddington CH (1942) The epigenotype. Endeavour 1(1):18–20Google Scholar
  6. 6.
    Hirst M, Marra MA (2009) Epigenetics and human disease. Int J Biochem Cell Biol 41(1):136–146. doi:10.1016/j.biocel.2008.09.011 PubMedCrossRefGoogle Scholar
  7. 7.
    Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer 11(10):726–734. doi:10.1038/nrc3130 PubMedCrossRefGoogle Scholar
  8. 8.
    Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46. doi:10.1038/nrg2626 PubMedCrossRefGoogle Scholar
  9. 9.
    Bamshad MJ, Ng SB, Bigham AW et al (2011) Exome sequencing as a tool for mendel­ian disease gene discovery. Nat Rev Genet 12(11):745–755. doi:10.1038/nrg3031 PubMedCrossRefGoogle Scholar
  10. 10.
    Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11(10):685–696. doi:10.1038/nrg2841 PubMedCrossRefGoogle Scholar
  11. 11.
    Hirst M, Marra MA (2011) Next generation sequencing based approaches to epigenomics. Brief Funct Genomic Proteomic 9(5–6):455–465. doi:10.1093/bfgp/elq035 Google Scholar
  12. 12.
    Morozova O, Hirst M, Marra MA (2009) Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet 10:135–151. doi:10.1146/annurev-genom-082908-145957 PubMedCrossRefGoogle Scholar
  13. 13.
    Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837PubMedCrossRefGoogle Scholar
  14. 14.
    Mortazavi A, Williams BA, Mccue K et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628. doi:10.1038/nmeth.1226 PubMedCrossRefGoogle Scholar
  15. 15.
    Bernstein BE, Stamatoyannopoulos JA, Costello JF et al (2010) The nih roadmap epigenomics mapping consortium. Nat Biotechnol 28(10):1045–1048. doi:10.1038/nbt1010-1045 PubMedCrossRefGoogle Scholar
  16. 16.
    Abbott A (2011) Europe to map the human epigenome. Nature 477(7366):518. doi:10.1038/477518a PubMedCrossRefGoogle Scholar
  17. 17.
    Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21PubMedCrossRefGoogle Scholar
  18. 18.
    Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301(5895):89–92PubMedCrossRefGoogle Scholar
  19. 19.
    Gama-Sosa MA, Slagel VA, Trewyn RW et al (1983) The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11(19):6883–6894PubMedCrossRefGoogle Scholar
  20. 20.
    Lorsbach RB, Moore J, Mathew S et al (2003) TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17(3):637–641. doi:10.1038/sj.leu.2402834 PubMedCrossRefGoogle Scholar
  21. 21.
    Ito S, D’alessio AC, Taranova OV et al (2010) Role of tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466(7310):1129–1133. doi:10.1038/nature09303 PubMedCrossRefGoogle Scholar
  22. 22.
    Koh KP, Yabuuchi A, Rao S et al (2011) Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8(2):200–213. doi:10.1016/j.stem.2011.01.008 PubMedCrossRefGoogle Scholar
  23. 23.
    Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in purkinje neurons and the brain. Science 324(5929):929–930. doi:10.1126/science.1169786 PubMedCrossRefGoogle Scholar
  24. 24.
    Song CX, Szulwach KE, Fu Y et al (2011) Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29(1):68–72. doi:10.1038/nbt.1732 PubMedCrossRefGoogle Scholar
  25. 25.
    Szwagierczak A, Bultmann S, Schmidt CS et al (2010) Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res 38(19):e181. doi:10.1093/nar/gkq684 PubMedCrossRefGoogle Scholar
  26. 26.
    Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by mll partner TET1. Science 324(5929):930–935. doi:10.1126/science.1170116 PubMedCrossRefGoogle Scholar
  27. 27.
    Penn NW, Suwalski R, O’riley C et al (1972) The presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid. Biochem J 126(4):781–790PubMedGoogle Scholar
  28. 28.
    Ito S, Shen L, Dai Q et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333(6047):1300–1303. doi:10.1126/science.1210597 PubMedCrossRefGoogle Scholar
  29. 29.
    He YF, Li BZ, Li Z et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333(6047):1303–1307. doi:10.1126/science.1210944 PubMedCrossRefGoogle Scholar
  30. 30.
    Wu H, Zhang Y (2011) Mechanisms and functions of tet protein-mediated 5-methylcytosine oxidation. Genes Dev 25(23):2436–2452. doi:10.1101/gad.179184.111 PubMedCrossRefGoogle Scholar
  31. 31.
    Cimmino L, Abdel-Wahab O, Levine RL et al (2011) Tet family proteins and their role in stem cell differentiation and transformation. Cell Stem Cell 9(3):193–204. doi:10.1016/j.stem.2011.08.007 PubMedCrossRefGoogle Scholar
  32. 32.
    Ehrlich M, Gama-Sosa MA, Huang LH et al (1982) Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res 10(8):2709–2721PubMedCrossRefGoogle Scholar
  33. 33.
    Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13(8):335–340PubMedCrossRefGoogle Scholar
  34. 34.
    Irizarry RA, Ladd-Acosta C, Wen B et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41(2):178–186. doi:10.1038/ng.298 PubMedCrossRefGoogle Scholar
  35. 35.
    Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196(2):261–282PubMedCrossRefGoogle Scholar
  36. 36.
    Meehan R, Lewis J, Cross S et al (1992) Transcriptional repression by methylation of CpG. J Cell Sci Suppl 16:9–14PubMedGoogle Scholar
  37. 37.
    Lewis JD, Meehan RR, Henzel WJ et al (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69(6): 905–914PubMedCrossRefGoogle Scholar
  38. 38.
    Jones PL, Veenstra GJ, Wade PA et al (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19(2):187–191PubMedCrossRefGoogle Scholar
  39. 39.
    Lorincz MC, Dickerson DR, Schmitt M et al (2004) Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol 11(11):1068–1075. doi:10.1038/nsmb840 PubMedCrossRefGoogle Scholar
  40. 40.
    Chodavarapu RK, Feng S, Bernatavichute YV et al (2010) Relationship between nucleosome positioning and DNA methylation. Nature 466(7304):388–392. doi:10.1038/nature09147 PubMedCrossRefGoogle Scholar
  41. 41.
    Maunakea AK, Nagarajan RP, Bilenky M et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303):253–257. doi:10.1038/nature09165 PubMedCrossRefGoogle Scholar
  42. 42.
    Yasui DH, Peddada S, Bieda MC et al (2007) Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc Natl Acad Sci U S A 104(49):19416–19421PubMedCrossRefGoogle Scholar
  43. 43.
    Chahrour M, Jung SY, Shaw C et al (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320(5880):1224–1229PubMedCrossRefGoogle Scholar
  44. 44.
    Antequera F, Bird A (1993) Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A 90(24):11995–11999PubMedCrossRefGoogle Scholar
  45. 45.
    Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6(8):597–610. doi:10.1038/nrg1655 PubMedCrossRefGoogle Scholar
  46. 46.
    Fraga MF, Herranz M, Espada J et al (2004) A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors. Cancer Res 64(16):5527–5534. doi:10.1158/0008-5472.CAN-03-4061 PubMedCrossRefGoogle Scholar
  47. 47.
    Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159. doi:10.1056/NEJMra072067 PubMedCrossRefGoogle Scholar
  48. 48.
    Weissmann S, Alpermann T, Grossmann V et al (2011) Landscape of TET2 mutations in acute myeloid leukemia. Leukemia. doi:10.1038/leu.2011.326
  49. 49.
    Abdel-Wahab O, Mullally A, Hedvat C et al (2009) Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 114(1):144–147. doi:10.1182/blood-2009-03-210039 PubMedCrossRefGoogle Scholar
  50. 50.
    Jankowska AM, Szpurka H, Tiu RV et al (2009) Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood 113(25):6403–6410. doi:10.1182/blood-2009-02-205690 PubMedCrossRefGoogle Scholar
  51. 51.
    Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773. doi:10.1056/NEJMoa0808710 PubMedCrossRefGoogle Scholar
  52. 52.
    Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812. doi:10.1126/science.1164382 PubMedCrossRefGoogle Scholar
  53. 53.
    Mardis ER, Ding L, Dooling DJ et al (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361(11):1058–1066. doi:10.1056/NEJMoa0903840 PubMedCrossRefGoogle Scholar
  54. 54.
    Jacinto FV, Ballestar E, Ropero S et al (2007) Discovery of epigenetically silenced genes by methylated DNA immunoprecipitation in colon cancer cells. Cancer Res 67(24): 11481–11486. doi:10.1158/0008-5472.CAN-07-2687 PubMedCrossRefGoogle Scholar
  55. 55.
    Weber M, Hellmann I, Stadler MB et al (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39(4):457–466. doi:10.1038/ng1990 PubMedCrossRefGoogle Scholar
  56. 56.
    Weber M, Davies JJ, Wittig D et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37(8):853–862. doi:10.1038/ng1598 PubMedCrossRefGoogle Scholar
  57. 57.
    Ruike Y, Imanaka Y, Sato F et al (2010) Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing. BMC Genomics 11:137. doi:10.1186/1471-2164-11-137 PubMedCrossRefGoogle Scholar
  58. 58.
    Stroud H, Feng S, Morey Kinney S et al (2011) 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol 12(6):R54. doi:10.1186/gb-2011-12-6-r54 PubMedCrossRefGoogle Scholar
  59. 59.
    Ficz G, Branco MR, Seisenberger S et al (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473(7347):398–402. doi:10.1038/nature10008 PubMedCrossRefGoogle Scholar
  60. 60.
    Wu H, D’alessio AC, Ito S et al (2011) Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev 25(7):679–684. doi:10.1101/gad.2036011 PubMedCrossRefGoogle Scholar
  61. 61.
    Xu Y, Wu F, Tan L et al (2011) Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell 42(4):451–464. doi:10.1016/j.molcel.2011.04.005 PubMedCrossRefGoogle Scholar
  62. 62.
    Szulwach KE, Li X, Li Y et al (2011) 5hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci 14(12):1607–1616. doi:10.1038/nn.2959 PubMedCrossRefGoogle Scholar
  63. 63.
    Pastor WA, Pape UJ, Huang Y et al (2011) Genome-wide mapping of 5-hydroxy­methylcytosine in embryonic stem cells. Nature 473(7347):394–397. doi:10.1038/nature10102 PubMedCrossRefGoogle Scholar
  64. 64.
    Ko M, Huang Y, Jankowska AM et al (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468(7325):839–843. doi:10.1038/nature09586 PubMedCrossRefGoogle Scholar
  65. 65.
    Harris RA, Wang T, Coarfa C et al (2010) Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 28(10):1097–1105. doi:10.1038/nbt.1682 PubMedCrossRefGoogle Scholar
  66. 66.
    Matarese F, Carrillo-De Santa Pau E, Stunnenberg HG (2011) 5-Hydroxymethyl­cytosine: a new kid on the epigenetic block? Mol Syst Biol 7:562. doi:10.1038/msb.2011.95 PubMedCrossRefGoogle Scholar
  67. 67.
    Serre D, Lee BH, Ting AH (2010) Mbd-isolated genome sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res 38(2):391–399. doi:10.1093/nar/gkp992 PubMedCrossRefGoogle Scholar
  68. 68.
    Brinkman AB, Simmer F, Ma K et al (2010) Whole-genome DNA methylation profiling using MethylCap-seq. Methods 52(3):232–236. doi:10.1016/j.ymeth.2010.06.012 PubMedCrossRefGoogle Scholar
  69. 69.
    Nair SS, Coolen MW, Stirzaker C et al (2011) Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain (MBD) protein capture for genome-wide DNA methylation analysis reveal CpG sequence coverage bias. Epigenetics 6(1):34–44. doi:10.4161/epi.6.1.13313 PubMedCrossRefGoogle Scholar
  70. 70.
    Hayatsu H (2008) Discovery of bisulfite-mediated cytosine conversion to uracil, the key reaction for DNA methylation analysis–a personal account. Proc Jpn Acad Ser B Phys Biol Sci 84(8):321–330PubMedCrossRefGoogle Scholar
  71. 71.
    Frommer M, Mcdonald LE, Millar DS et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89(5):1827–1831PubMedCrossRefGoogle Scholar
  72. 72.
    Lister R, O’malley RC, Tonti-Filippini J et al (2008) Highly integrated single-base resolution maps of the epigenome in arabidopsis. Cell 133(3):523–536. doi:10.1016/j.cell.2008.03.029 PubMedCrossRefGoogle Scholar
  73. 73.
    Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322. doi:10.1038/nature08514 PubMedCrossRefGoogle Scholar
  74. 74.
    Cokus SJ, Feng S, Zhang X et al (2008) Shotgun bisulphite sequencing of the arabidopsis genome reveals DNA methylation patterning. Nature 452(7184):215–219PubMedCrossRefGoogle Scholar
  75. 75.
    Li Y, Zhu J, Tian G et al (2010) The DNA methylome of human peripheral blood mononuclear cells. PLoS Biol 8(11):e1000533. doi:10.1371/journal.pbio.1000533 PubMedCrossRefGoogle Scholar
  76. 76.
    Bormann Chung CA, Boyd VL, Mckernan KJ et al (2010) Whole methylome analysis by ultra-deep sequencing using two-base encoding. PLoS One 5(2):e9320. doi:10.1371/journal.pone.0009320 PubMedCrossRefGoogle Scholar
  77. 77.
    Laurent L, Wong E, Li G et al (2010) Dynamic changes in the human methylome during differentiation. Genome Res 20(3):320–331. doi:10.1101/gr.101907.109 PubMedCrossRefGoogle Scholar
  78. 78.
    Stadler MB, Murr R, Burger L et al (2011) DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480(7378):490–495. doi:10.1038/nature10716 PubMedGoogle Scholar
  79. 79.
    Birney E, Stamatoyannopoulos JA, Dutta A et al (2007) Identification and analysis of functional elements in 1% of the human genome by the encode pilot project. Nature 447(7146): 799–816. doi:10.1038/nature05874 PubMedCrossRefGoogle Scholar
  80. 80.
    Myers RM, Stamatoyannopoulos J, Snyder M et al (2011) A user’s guide to the encyclopedia of DNA elements (encode). PLoS Biol 9(4):e1001046. doi:10.1371/journal.pbio.1001046 CrossRefGoogle Scholar
  81. 81.
    Ajay SS, Parker SC, Abaan HO et al (2011) Accurate and comprehensive sequencing of personal genomes. Genome Res 21(9):1498–1505. doi:10.1101/gr.123638.111 PubMedCrossRefGoogle Scholar
  82. 82.
    Huang Y, Pastor WA, Shen Y et al (2010) The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One 5(1):e8888. doi:10.1371/journal.pone.0008888 PubMedCrossRefGoogle Scholar
  83. 83.
    Hodges E, Smith AD, Kendall J et al (2009) High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Res 19(9):1593–1605. doi:10.1101/gr.095190.109 PubMedCrossRefGoogle Scholar
  84. 84.
    Lee EJ, Pei L, Srivastava G et al (2011) Targeted bisulfite sequencing by solution hybrid selection and massively parallel sequencing. Nucleic Acids Res 39(19):e127. doi:10.1093/nar/gkr598 PubMedCrossRefGoogle Scholar
  85. 85.
    Taylor KH, Kramer RS, Davis JW et al (2007) Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res 67(18):8511–8518. doi:10.1158/0008-5472.CAN-07-1016 PubMedCrossRefGoogle Scholar
  86. 86.
    Ball MP, Li JB, Gao Y et al (2009) Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol 27(4):361–368. doi:10.1038/nbt.1533 PubMedCrossRefGoogle Scholar
  87. 87.
    Meissner A, Gnirke A, Bell GW et al (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33(18):5868–5877. doi:10.1093/nar/gki901 PubMedCrossRefGoogle Scholar
  88. 88.
    Smith ZD, Gu H, Bock C et al (2009) High-throughput bisulfite sequencing in mammalian genomes. Methods 48(3):226–232. doi:10.1016/j.ymeth.2009.05.003 PubMedCrossRefGoogle Scholar
  89. 89.
    Gu H, Smith ZD, Bock C et al (2011) Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc 6(4):468–481. doi:10.1038/nprot.2010.190 PubMedCrossRefGoogle Scholar
  90. 90.
    Wang L, Sun J, Wu H et al (2012) Systematic assessment of reduced representation bisulfite sequencing to human blood samples: a promising method for large-sample-scale epigenomic studies. J Biotechnol 157(1):1–6. doi:10.1016/j.jbiotec.2011.06.034 PubMedCrossRefGoogle Scholar
  91. 91.
    Gu H, Bock C, Mikkelsen TS et al (2010) Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat Methods 7(2):133–136. doi:10.1038/nmeth.1414 PubMedCrossRefGoogle Scholar
  92. 92.
    Wiegand KC, Shah SP, Al-Agha OM et al (2010) ARID1a mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 363(16):1532–1543. doi:10.1056/NEJMoa1008433 PubMedCrossRefGoogle Scholar
  93. 93.
    Bock C, Tomazou EM, Brinkman AB et al (2010) Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotechnol 28(10):1106–1114. doi:10.1038/nbt.1681 PubMedCrossRefGoogle Scholar
  94. 94.
    Deng J, Shoemaker R, Xie B et al (2009) Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat Biotechnol 27(4):353–360. doi:10.1038/nbt.1530 PubMedCrossRefGoogle Scholar
  95. 95.
    Hansen KD, Timp W, Bravo HC et al (2011) Increased methylation variation in epigenetic domains across cancer types. Nat Genet 43(8):768–775. doi:10.1038/ng.865 PubMedCrossRefGoogle Scholar
  96. 96.
    Bird AP, Taggart MH, Smith BA (1979) Methylated and unmethylated DNA compartments in the sea urchin genome. Cell 17(4):889–901PubMedCrossRefGoogle Scholar
  97. 97.
    Colaneri A, Staffa N, Fargo DC et al (2011) Expanded methyl-sensitive cut counting reveals hypomethylation as an epigenetic state that highlights functional sequences of the genome. Proc Natl Acad Sci U S A 108(23):9715–9720. doi:10.1073/pnas.1105713108 PubMedCrossRefGoogle Scholar
  98. 98.
    Brunner AL, Johnson DS, Kim SW et al (2009) Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res 19(6):1044–1056. doi:10.1101/gr.088773.108 PubMedCrossRefGoogle Scholar
  99. 99.
    Oda M, Glass JL, Thompson RF et al (2009) High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res 37(12):3829–3839. doi:10.1093/nar/gkp260 PubMedCrossRefGoogle Scholar
  100. 100.
    Flusberg BA, Webster DR, Lee JH et al (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7(6):461–465. doi:10.1038/nmeth.1459 PubMedCrossRefGoogle Scholar
  101. 101.
    Korlach J, Bjornson KP, Chaudhuri BP et al (2010) Real-time DNA sequencing from single polymerase molecules. Methods Enzymol 472:431–455. doi:10.1016/S0076-6879(10)72001-2 PubMedCrossRefGoogle Scholar
  102. 102.
    Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138. doi:10.1126/science.1162986 PubMedCrossRefGoogle Scholar
  103. 103.
    Clarke J, Wu H-C, Jayasinghe L et al (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4(4):265–270. doi:10.1038/nnano.2009.12 PubMedCrossRefGoogle Scholar
  104. 104.
    The 1000 Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073. doi:10.1038/nature09534 Google Scholar
  105. 105.
    Flicek P, Birney E (2009) Sense from sequence reads: methods for alignment and assembly. Nat Methods 6(11 Suppl):S6–S12. doi:10.1038/nmeth.1376 PubMedCrossRefGoogle Scholar
  106. 106.
    Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25(14):1754–1760. doi:10.1093/bioinformatics/btp324 PubMedCrossRefGoogle Scholar
  107. 107.
    Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25. doi:10.1186/gb-2009-10-3-r25 PubMedCrossRefGoogle Scholar
  108. 108.
    Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and samtools. Bioinformatics 25(16):2078–2079. doi:10.1093/bioinformatics/btp352 PubMedCrossRefGoogle Scholar
  109. 109.
    Xi Y, Li W (2009) BSMAP: whole genome bisulfite sequence mapping program. BMC Bioinformatics 10:232. doi:10.1186/1471-2105-10-232 PubMedCrossRefGoogle Scholar
  110. 110.
    Coarfa C, Yu F, Miller CA et al (2010) Pash 3.0: a versatile software package for read mapping and integrative analysis of genomic and epigenomic variation using massively parallel DNA sequencing. BMC Bioinformatics 11:572. doi:10.1186/1471-2105-11-572 PubMedCrossRefGoogle Scholar
  111. 111.
    Chen PY, Cokus SJ, Pellegrini M (2010) BS seeker: precise mapping for bisulfite sequencing. BMC Bioinformatics 11:203. doi:10.1186/1471-2105-11-203 PubMedCrossRefGoogle Scholar
  112. 112.
    Xi Y, Bock C, Muller F et al (2011) RRBSMAP: a fast, accurate and user-friendly alignment tool for reduced representation bisulfite sequencing. Bioinformatics. doi:10.1093/bioinformatics/btr668
  113. 113.
    Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for bisulfite-Seq applications. Bioinformatics 27(11):1571–1572. doi:10.1093/bioinformatics/btr167 PubMedCrossRefGoogle Scholar
  114. 114.
    Dreszer TR, Karolchik D, Zweig AS et al (2012) The UCSC genome browser database: extensions and updates 2011. Nucleic Acids Res 40(Database issue):D918–D923. doi:10.1093/nar/gkr1055 PubMedCrossRefGoogle Scholar
  115. 115.
    Fejes AP, Robertson G, Bilenky M et al (2008) FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology. Bioinformatics 24(15):1729–1730. doi:10.1093/bioinformatics/btn305 PubMedCrossRefGoogle Scholar
  116. 116.
    Nielsen CB, Cantor M, Dubchak I et al (2010) Visualizing genomes: techniques and challenges. Nat Methods 7(3 Suppl):S5–S15. doi:10.1038/nmeth.1422 PubMedCrossRefGoogle Scholar
  117. 117.
    Flicek P, Amode MR, Barrell D et al (2012) Ensemble 2012. Nucleic Acids Res 40(Database issue):D84–D90. doi:10.1093/nar/gkr991 PubMedCrossRefGoogle Scholar
  118. 118.
    Zhou X, Maricque B, Xie M et al (2011) The human epigenome browser at Washington University. Nat Methods 8(12):989–990. doi:10.1038/nmeth.1772 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Department of Microbiology and Immunology, Centre for High-Throughput BiologyUniversity of British ColumbiaVancouverCanada
  2. 2.BC Cancer AgencyCanada’s Michael Smith Genome Sciences CentreVancouverCanada

Personalised recommendations