Finding Common Regions of Alteration in Copy Number Data

  • Oscar M. RuedaEmail author
  • Ramon Diaz-Uriarte
  • Carlos Caldas
Part of the Methods in Molecular Biology book series (MIMB, volume 973)


In this chapter, we review some recent methods designed for detecting recurrent copy number regions, that is, genomic regions that show evidence of being altered in a set of samples. We analyze Affymetrix SNP6 data from 87 Her2-type breast tumors from a recent study using three different methods, showing different definitions and features of common regions: studying heterogeneity in copy number profiles, refining candidates for driver oncogenes, and consolidating broad amplifications.

Key words

aCGH SNP Copy number alterations Copy number variation Minimal common regions 



This research was supported by Cancer Research UK and the Spanish Ministerio de Ciencia e Innovación (grant BIO2009-12458 to RDU).


  1. 1.
    Haber DA, Settleman J (2007) Cancer: drivers and passengers. Nature 446:145–146PubMedCrossRefGoogle Scholar
  2. 2.
    Rueda OM, Diaz-Uriarte R (2010) Finding recurrent copy number alteration regions: a review of methods. Curr Bioinform 5(1):1–17CrossRefGoogle Scholar
  3. 3.
    Shah SP (2008) Computational methods for identification of recurrent copy number alteration patterns by array CGH. Cytogenet Genome Res 123(1–4):343–351PubMedCrossRefGoogle Scholar
  4. 4.
    Rueda OM, Diaz-Uriarte R (2007) Flexible and accurate detection of genomic copy-number changes from aCGH. PLoS Comput Biol 3(6):e122PubMedCrossRefGoogle Scholar
  5. 5.
    Rueda OM, Diaz-Uriarte R (2009) RJaCGH: Bayesian analysis of aCGH arrays for detecting copy number changes and recurrent regions. Bioinformatics 25:1959–1960PubMedCrossRefGoogle Scholar
  6. 6.
    Rueda OM, Diaz-Uriarte R (2009) Detection of recurrent copy number alterations in the genome: taking among-subject heterogeneity seriously. BMC Bioinformatics 10(308)Google Scholar
  7. 7.
    Ivakhno S, Tavaré S (2010) CNAnova: a new approach for finding recurrent copy number abnormalities in cancer SNP microarray data. Bioinformatics 26(11):1395–1402PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang Q et al (2010) CMDS: a population-based method for identifying recurrent dna copy number aberrations in cancer from high-resolution data. Bioinformatics 26(4):464–469PubMedCrossRefGoogle Scholar
  9. 9.
    Seshan VE, Olshen A (2011) DNAcopy: DNA copy number data analysis. R package version 1.26.0Google Scholar
  10. 10.
    Olshen AB et al (2004) Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5:557–572PubMedCrossRefGoogle Scholar
  11. 11.
    Curtis C et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403):346–352. doi: 10.1038/nature10983, Published online 18 April 2012PubMedGoogle Scholar
  12. 12.
    Rueda OM, Rueda C, Diaz-Uriarte R (2011) A Bayesian HMM with random effects and an unknown number of states for DNA copy number analysis. J Stat Comput Simul doi:{10.1080/00949655.2011.609818}Google Scholar
  13. 13.
    van de Wiel MA et al (2007) CGHcall: calling aberrations for array CGH tumor profiles. Bioinformatics 23(7):892–894PubMedCrossRefGoogle Scholar
  14. 14.
    Benelli M et al (2010) A very fast and accurate method for calling aberrations in array-CGH data. Biostatistics 11(3):515–518PubMedCrossRefGoogle Scholar
  15. 15.
    Beroukhim R et al (2007) Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci USA 104(50):20007–20012PubMedCrossRefGoogle Scholar
  16. 16.
    Weir B et al (2007) Characterizing the cancer genome in lung adenocarcinoma. Nature 450(7171):893–898PubMedCrossRefGoogle Scholar
  17. 17.
    Mermel CH et al (2011) Gistic2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol 12(R41)Google Scholar
  18. 18.
    Rouveirol C et al (2006) Computation of recurrent minimal genomic alterations from array-CGH data. Bioinformatics 22:2066–2073PubMedCrossRefGoogle Scholar
  19. 19.
    Etemadmoghadam D et al (2009) Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas. Clin Cancer Res 15(4):1417–1427PubMedCrossRefGoogle Scholar
  20. 20.
    Sanchez-Garcia F et al (2010) JISTIC: identification of significant targets in cancer. BMC Bioinformatics 14(189)Google Scholar
  21. 21.
    Walter V, Nobel AB, Wright FA (2011) DINAMIC: a method to identify recurrent DNA copy number aberrations in tumors. Bioinformatics 27(5):678–685PubMedCrossRefGoogle Scholar
  22. 22.
    Morganella S, Pagnotta S, Ceccarelli M (2011) Finding recurrent copy number alterations preserving within-sample homogeneity. Bioinformatics 27(21):2949–2956PubMedCrossRefGoogle Scholar
  23. 23.
    Carro A et al (2010) waviCGH: a web application for the analysis and visualization of genomic copy number alterations. Nucleic Acids Res 38(suppl 2):W182–W187PubMedCrossRefGoogle Scholar
  24. 24.
    Parker JS et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Oscar M. Rueda
    • 1
    Email author
  • Ramon Diaz-Uriarte
    • 2
  • Carlos Caldas
    • 3
    • 4
    • 5
    • 6
    • 7
  1. 1.Cancer Research UK Cambridge Research Institute, Li Ka Shing CentreCambridgeUK
  2. 2.Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols,”Universidad Autónoma de MadridMadridSpain
  3. 3.Department of OncologyUniversity of CambridgeCambridgeUK
  4. 4.Cancer Research UK Cambridge Research InstituteCambridgeUK
  5. 5.Cambridge Breast UnitAddenbrooke’s Hospital, Cambridge University Hospital NHS Foundation TrustCambridgeUK
  6. 6.NIHR Cambridge Biomedical Research CentreCambridgeUK
  7. 7.Cambridge Experimental Cancer Medicine CentreCambridgeUK

Personalised recommendations