Advertisement

Nonfamilial Breast Cancer Subtypes

  • Markus Ringnér
  • Johan Staaf
  • Göran Jönsson
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 973)

Abstract

Over the last decade, our knowledge in somatic genetic events related to breast cancer has increased ­enormously. Through usage of various genome-wide molecular approaches, it has become increasingly clear that breast cancer is a vastly heterogeneous disease. Microarray-based gene expression profiling has divided breast cancer into five distinct intrinsic subtypes termed basal-like, HER2-enriched, normal-like, luminal A, and luminal B. Importantly, these subtypes are closely correlated to clinical variables as well as different outcomes, with luminal A tumors as the good prognostic group. Initial studies using genome-wide DNA copy number data broadly partitioned breast cancers into three types, complex, amplifier, and simple, and moreover associated distinct copy number changes with the intrinsic subtypes defined by gene expression profiles. More recently, this genomic classification was refined into six genomic subtypes demonstrating strong resemblance to the intrinsic gene expression classification. Additionally, inherited BRCA1- and BRCA2-mutated tumors were significantly correlated to specific subtypes. In this chapter, we will review the current status regarding genomic subtypes of nonfamilial breast cancer.

Key words

Breast cancer aCGH Subtypes Prognosis Gene expression Amplification Deletion 

References

  1. 1.
    Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752PubMedCrossRefGoogle Scholar
  2. 2.
    Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423PubMedCrossRefGoogle Scholar
  3. 3.
    Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874PubMedCrossRefGoogle Scholar
  4. 4.
    Cheang MC, Chia SK, Voduc D et al (2009) Ki67 index, her2 status, and prognosis of patients with luminal b breast cancer. J Natl Cancer Inst 101(10):736–750PubMedCrossRefGoogle Scholar
  5. 5.
    Jonsson G, Staaf J, Vallon-Christersson J et al (2010) Genomic subtypes of breast cancer identified by array-comparative genomic hybridization display distinct molecular and clinical characteristics. Breast Cancer Res 12(3):R42PubMedCrossRefGoogle Scholar
  6. 6.
    Holm K, Hegardt C, Staaf J et al (2010) Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns. Breast Cancer Res 12(3):R36PubMedCrossRefGoogle Scholar
  7. 7.
    Parker JS, Mullins M, Cheang MC et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167PubMedCrossRefGoogle Scholar
  8. 8.
    Guedj M, Marisa L, De Reynies A et al (2011) A refined molecular taxonomy of breast cancer. Oncogene 31(9):1196–1206PubMedCrossRefGoogle Scholar
  9. 9.
    Farmer P, Bonnefoi H, Becette V et al (2005) Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24(29):4660–4671PubMedCrossRefGoogle Scholar
  10. 10.
    Teschendorff AE, Miremadi A, Pinder SE et al (2007) An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol 8(8):R157PubMedCrossRefGoogle Scholar
  11. 11.
    Herschkowitz JI, Simin K, Weigman VJ et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8(5):R76PubMedCrossRefGoogle Scholar
  12. 12.
    Prat A, Parker JS, Karginova O et al (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12(5):R68PubMedCrossRefGoogle Scholar
  13. 13.
    Creighton CJ, Li X, Landis M et al (2009) Residual breast cancers after conventional ­therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 106(33):13820–13825PubMedCrossRefGoogle Scholar
  14. 14.
    Nielsen TO, Parker JS, Leung S et al (2010) A comparison of pam50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res 16(21):5222–5232PubMedCrossRefGoogle Scholar
  15. 15.
    Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360(8):790–800PubMedCrossRefGoogle Scholar
  16. 16.
    Desmedt C, Haibe-Kains B, Wirapati P et al (2008) Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res 14(16):5158–5165PubMedCrossRefGoogle Scholar
  17. 17.
    Reyal F, Van Vliet MH, Armstrong NJ et al (2008) A comprehensive analysis of prognostic signatures reveals the high predictive capacity of the proliferation, immune response and rna splicing modules in breast cancer. Breast Cancer Res 10(6):R93PubMedCrossRefGoogle Scholar
  18. 18.
    Finak G, Bertos N, Pepin F et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14(5):518–527PubMedCrossRefGoogle Scholar
  19. 19.
    Staaf J, Ringner M, Vallon-Christersson J et al (2010) Identification of subtypes in human epidermal growth factor receptor 2–positive breast cancer reveals a gene signature prognostic of outcome. J Clin Oncol 28(11):1813–1820PubMedCrossRefGoogle Scholar
  20. 20.
    Pollack JR, Sorlie T, Perou CM et al (2002) Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci USA 99(20):12963–12968PubMedCrossRefGoogle Scholar
  21. 21.
    Hyman E, Kauraniemi P, Hautaniemi S et al (2002) Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res 62(21):6240–6245PubMedGoogle Scholar
  22. 22.
    Holland DG, Burleigh A, Git A et al (2011) Znf703 is a common luminal b breast cancer oncogene that differentially regulates luminal and basal progenitors in human mammary epithelium. EMBO Mol Med 3(3):167–180PubMedCrossRefGoogle Scholar
  23. 23.
    Russnes HG, Vollan HK, Lingjaerde OC et al (2010) Genomic architecture characterizes tumor progression paths and fate in breast cancer patients. Sci Transl Med 2(38):38ra47PubMedCrossRefGoogle Scholar
  24. 24.
    Chin K, Devries S, Fridlyand J et al (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6):529–541PubMedCrossRefGoogle Scholar
  25. 25.
    Andre F, Job B, Dessen P et al (2009) Molecular characterization of breast cancer with high-­resolution oligonucleotide comparative genomic hybridization array. Clin Cancer Res 15(2):441–451PubMedCrossRefGoogle Scholar
  26. 26.
    Owens MA, Horten BC, Da Silva MM (2004) Her2 amplification ratios by fluorescence in situ hybridization and correlation with immunohistochemistry in a cohort of 6556 breast cancer tissues. Clin Breast Cancer 5(1):63–69PubMedCrossRefGoogle Scholar
  27. 27.
    Slamon DJ, Clark GM, Wong SG et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the her-2/neu oncogene. Science 235(4785):177–182PubMedCrossRefGoogle Scholar
  28. 28.
    Ross JS, Fletcher JA, Linette GP et al (2003) The her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist 8(4):307–325PubMedCrossRefGoogle Scholar
  29. 29.
    Geyer CE, Forster J, Lindquist D et al (2006) Lapatinib plus capecitabine for her2-positive advanced breast cancer. N Engl J Med 355(26):2733–2743PubMedCrossRefGoogle Scholar
  30. 30.
    Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al (2005) Trastuzumab after adjuvant chemotherapy in her2-positive breast cancer. N Engl J Med 353(16):1659–1672PubMedCrossRefGoogle Scholar
  31. 31.
    Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against her2 for metastatic breast cancer that overexpresses her2. N Engl J Med 344(11):783–792PubMedCrossRefGoogle Scholar
  32. 32.
    Sircoulomb F, Bekhouche I, Finetti P et al (2010) Genome profiling of erbb2-amplified breast cancers. BMC Cancer 10:539PubMedCrossRefGoogle Scholar
  33. 33.
    Staaf J, Jonsson G, Ringner M et al (2010) High-resolution genomic and expression analyses of copy number alterations in her2-amplified breast cancer. Breast Cancer Res 12(3):R25PubMedCrossRefGoogle Scholar
  34. 34.
    Letessier A, Sircoulomb F, Ginestier C et al (2006) Frequency, prognostic impact, and subtype association of 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13 amplifications in breast cancers. BMC Cancer 6:245PubMedCrossRefGoogle Scholar
  35. 35.
    Garcia MJ, Pole JC, Chin SF et al (2005) A 1 mb minimal amplicon at 8p11-12 in breast cancer identifies new candidate oncogenes. Oncogene 24(33):5235–5245PubMedCrossRefGoogle Scholar
  36. 36.
    Reis-Filho JS, Simpson PT, Turner NC et al (2006) Fgfr1 emerges as a potential therapeutic target for lobular breast carcinomas. Clin Cancer Res 12(22):6652–6662PubMedCrossRefGoogle Scholar
  37. 37.
    Sircoulomb F, Nicolas N, Ferrari A et al (2011) Znf703 gene amplification at 8p12 specifies luminal b breast cancer. EMBO Mol Med 3(3):153–166PubMedCrossRefGoogle Scholar
  38. 38.
    Bostner J, Ahnstrom Waltersson M, Fornander T et al (2007) Amplification of ccnd1 and pak1 as predictors of recurrence and tamoxifen resistance in postmenopausal breast cancer. Oncogene 26(49):6997–7005PubMedCrossRefGoogle Scholar
  39. 39.
    Holm K, Staaf J, Jonsson G et al (2012) Characterisation of amplification patterns and target genes at chromosome 11q13 in ccnd1-amplified sporadic and familial breast tumours. Breast Cancer Res Treat 133(2):583–594PubMedCrossRefGoogle Scholar
  40. 40.
    Hughes-Davies L, Huntsman D, Ruas M et al (2003) Emsy links the brca2 pathway to ­sporadic breast and ovarian cancer. Cell 115(5):523–535PubMedCrossRefGoogle Scholar
  41. 41.
    Karlsson E, Waltersson MA, Bostner J et al (2011) High-resolution genomic analysis of the 11q13 amplicon in breast cancers identifies synergy with 8p12 amplification, involving the mtor targets s6k2 and 4ebp1. Genes Chromosomes Cancer 50(10):775–787PubMedCrossRefGoogle Scholar
  42. 42.
    Kwek SS, Roy R, Zhou H et al (2009) Co-amplified genes at 8p12 and 11q13 in breast tumors cooperate with two major pathways in oncogenesis. Oncogene 28(17):1892–1903PubMedCrossRefGoogle Scholar
  43. 43.
    Albertson DG, Ylstra B, Segraves R et al (2000) Quantitative mapping of amplicon structure by array cgh identifies cyp24 as a candidate oncogene. Nat Genet 25(2):144–146PubMedCrossRefGoogle Scholar
  44. 44.
    Bergamaschi A, Kim YH, Wang P et al (2006) Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer 45(11):1033–1040PubMedCrossRefGoogle Scholar
  45. 45.
    Staaf J, Jonsson G, Ringner M et al (2007) Normalization of array-cgh data: influence of copy number imbalances. BMC Genomics 8:382PubMedCrossRefGoogle Scholar
  46. 46.
    Autio R, Hautaniemi S, Kauraniemi P et al (2003) Cgh-plotter: matlab toolbox for cgh-data analysis. Bioinformatics 19(13):1714–1715PubMedCrossRefGoogle Scholar
  47. 47.
    Hupe P, Stransky N, Thiery JP et al (2004) Analysis of array cgh data: from signal ratio to gain and loss of DNA regions. Bioinformatics 20(18):3413–3422PubMedCrossRefGoogle Scholar
  48. 48.
    Venkatraman ES, Olshen AB (2007) A faster circular binary segmentation algorithm for the analysis of array cgh data. Bioinformatics 23(6):657–663PubMedCrossRefGoogle Scholar
  49. 49.
    Peiffer DA, Le JM, Steemers FJ et al (2006) High-resolution genomic profiling of chromosomal aberrations using infinium whole-genome genotyping. Genome Res 16(9):1136–1148PubMedCrossRefGoogle Scholar
  50. 50.
    Assie G, Laframboise T, Platzer P et al (2008) Snp arrays in heterogeneous tissue: highly accurate collection of both germline and somatic genetic information from unpaired single tumor samples. Am J Hum Genet 82(4):903–915PubMedCrossRefGoogle Scholar
  51. 51.
    Popova T, Manie E, Stoppa-Lyonnet D et al (2009) Genome alteration print (gap): a tool to visualize and mine complex cancer genomic profiles obtained by snp arrays. Genome Biol 10(11):R128PubMedCrossRefGoogle Scholar
  52. 52.
    Van Loo P, Nordgard SH, Lingjaerde OC et al (2010) Allele-specific copy number analysis of tumors. Proc Natl Acad Sci USA 107(39):16910–16915PubMedCrossRefGoogle Scholar
  53. 53.
    Beroukhim R, Getz G, Nghiemphu L et al (2007) Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci USA 104(50):20007–20012PubMedCrossRefGoogle Scholar
  54. 54.
    Mermel CH, Schumacher SE, Hill B et al (2011) Gistic2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol 12(4):R41PubMedCrossRefGoogle Scholar
  55. 55.
    Hicks J, Krasnitz A, Lakshmi B et al (2006) Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res 16(12):1465–1479PubMedCrossRefGoogle Scholar
  56. 56.
    Chin SF, Teschendorff AE, Marioni JC et al (2007) High-resolution acgh and expression profiling identifies a novel genomic subtype of er negative breast cancer. Genome Biol 8(10):R215PubMedCrossRefGoogle Scholar
  57. 57.
    Jonsson G, Naylor TL, Vallon-Christersson J et al (2005) Distinct genomic profiles in hereditary breast tumors identified by array-based comparative genomic hybridization. Cancer Res 65(17):7612–7621PubMedGoogle Scholar
  58. 58.
    Joosse SA, Van Beers EH, Tielen IH et al (2009) Prediction of brca1-association in hereditary non-brca1/2 breast carcinomas with array-cgh. Breast Cancer Res Treat 116(3):479–489PubMedCrossRefGoogle Scholar
  59. 59.
    Holstege H, Horlings HM, Velds A et al (2010) Brca1-mutated and basal-like breast cancers have similar acgh profiles and a high incidence of protein truncating tp53 mutations. BMC Cancer 10:654PubMedCrossRefGoogle Scholar
  60. 60.
    Cortesi L, Turchetti D, Bertoni C et al (2000) Comparison between genotype and phenotype identifies a high-risk population carrying brca1 mutations. Genes Chromosomes Cancer 27(2):130–135PubMedCrossRefGoogle Scholar
  61. 61.
    Lakhani SR, Gusterson BA, Jacquemier J et al (2000) The pathology of familial breast cancer: histological features of cancers in families not attributable to mutations in brca1 or brca2. Clin Cancer Res 6(3):782–789PubMedGoogle Scholar
  62. 62.
    Lakhani SR, Jacquemier J, Sloane JP et al (1998) Multifactorial analysis of differences between sporadic breast cancers and cancers involving brca1 and brca2 mutations. J Natl Cancer Inst 90(15):1138–1145PubMedCrossRefGoogle Scholar
  63. 63.
    Stefansson OA, Jonasson JG, Olafsdottir K et al (2011) Cpg island hypermethylation of brca1 and loss of prb as co-occurring events in basal/triple-negative breast cancer. Epigenetics 6(5):638–649PubMedCrossRefGoogle Scholar
  64. 64.
    Joosse SA, Brandwijk KI, Mulder L et al (2011) Genomic signature of brca1 deficiency in sporadic basal-like breast tumors. Genes Chromosomes Cancer 50(2):71–81PubMedCrossRefGoogle Scholar
  65. 65.
    Saal LH, Gruvberger-Saal SK, Persson C et al (2008) Recurrent gross mutations of the pten tumor suppressor gene in breast cancers with deficient dsb repair. Nat Genet 40(1):102–107PubMedCrossRefGoogle Scholar
  66. 66.
    Smid M, Hoes M, Sieuwerts AM et al (2011) Patterns and incidence of chromosomal instability and their prognostic relevance in breast cancer subtypes. Breast Cancer Res Treat 128(1):23–30PubMedCrossRefGoogle Scholar
  67. 67.
    Thompson PA, Brewster AM, Kim-Anh D et al (2011) Selective genomic copy number imbalances and probability of recurrence in early-stage breast cancer. PLoS One 6(8):e23543PubMedCrossRefGoogle Scholar
  68. 68.
    Borg A, Tandon AK, Sigurdsson H et al (1990) Her-2/neu amplification predicts poor survival in node-positive breast cancer. Cancer Res 50(14):4332–4337PubMedGoogle Scholar
  69. 69.
    Carter SL, Eklund AC, Kohane IS et al (2006) A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 38(9):1043–1048PubMedCrossRefGoogle Scholar
  70. 70.
    Farmer H, Mccabe N, Lord CJ et al (2005) Targeting the DNA repair defect in brca mutant cells as a therapeutic strategy. Nature 434(7035):917–921PubMedCrossRefGoogle Scholar
  71. 71.
    Fong PC, Boss DS, Yap TA et al (2009) Inhibition of poly(adp-ribose) polymerase in tumors from brca mutation carriers. N Engl J Med 361(2):123–134PubMedCrossRefGoogle Scholar
  72. 72.
    Silver DP, Richardson AL, Eklund AC et al (2010) Efficacy of neoadjuvant cisplatin in triple-negative breast cancer. J Clin Oncol 28(7):1145–1153PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Markus Ringnér
    • 1
    • 2
  • Johan Staaf
    • 1
    • 2
  • Göran Jönsson
    • 3
  1. 1.Department of Oncology, Clinical SciencesLund UniversityLundSweden
  2. 2.CREATE Health Strategic Center for Translational Cancer ResearchLund UniversityLundSweden
  3. 3.Department of Oncology, Clinical Sciences, and CREATE Health Strategic Center for Translational Cancer ResearchLund UniversityLundSweden

Personalised recommendations