Advertisement

Reactive Astrocytes, Astrocyte Intermediate Filament Proteins, and Their Role in the Disease Pathogenesis

  • Milos PeknyEmail author
  • Michelle Porritt
  • Yolanda de Pablo
  • Marcela Pekna
  • Ulrika Wilhelmsson
Protocol
Part of the Neuromethods book series (NM, volume 79)

Abstract

Astrocyte activation and reactive gliosis are seen in many neuropathologies, e.g., neurotrauma, stroke, epilepsy, or neurodegenerative diseases. Astrocyte activation alters gene expression and leads to morphological and functional changes in astrocytes with important functional consequences for the central nervous system (Eddleston and Mucke, Neuroscience 54:15-36, 1993; Eng and Ghirnikar, Brain Pathol 4:229-237, 1994; Hernandez et al., Glia 38:45-64, 2002; Pekny and Nilsson, Glia 50:427-434, 2005; Wilhelmsson et al., Proc Natl Acad Sci U S A 103:17513-17518, 2006; Sofroniew, Trends Neurosci 32:638-647, 2009; Sofroniew and Vinters, Acta Neuropathol 119:7-35, 2010). The understanding of astrocyte activation and reactive gliosis in pathological situations remains incomplete but the increasing amount of experimental evidence points to its importance in disease pathogenesis (Wilhelmsson et al., J Neurosci 24:5016-5021, 2004; Sofroniew, Neuroscientist 11:400-407, 2005; Maragakis and Rothstein, Nat Clin Pract Neurol 2:679-689, 2006; Seifert et al., Nat Rev Neurosci 7:194-206, 2006; Correa-Cerro and Mandell, J Neuropathol Exp Neurol 66:169-76, 2007; Barres, Neuron 60:430-440, 2008; Li et al., J Cereb Blood Flow Metab 28:468-481, 2008; Macauley et al. J Neurosci 31:15575-15585, 2011). One of the principal hallmarks of astrocyte activation and reactive gliosis is the upregulation of astrocyte intermediate filament (nanofilament) proteins and reorganization of intermediate filaments that are part of the cytoskeleton. This review focuses on the role of the intermediate filament system of astrocytes in neuropathological context and presents some of the relevant model systems.

Key words

Astrocytes Intermediate filaments GFAP Vimentin Reactive gliosis Entorhinal cortex lesion Photothrombotic model Hypoxia Oxygen–glucose deprivation Experimental models 

Notes

Acknowledgements

This work was supported by Swedish Research Council (11548 to MPy, 20116 to MPa), ALF Gothenburg (11267 to MPa and 146051 to MPy), STENA Foundation, AFA Insurance, the EU projects EduGlia (237956 to MPy), TargetBraIn (279017 to MPy) and NanoNet COST Action (BM1002), and R. and T. Söderberg’s, E. Jacobson’s, and R. and U. Amlöv’s Foundations.

References

  1. 1.
    Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes–implications for their role in neurologic disease. Neuroscience 54:15–36PubMedCrossRefGoogle Scholar
  2. 2.
    Eng LF, Ghirnikar RS (1994) GFAP and astrogliosis. Brain Pathol 4:229–237PubMedCrossRefGoogle Scholar
  3. 3.
    Hernandez MR, Agapova OA, Yang P et al (2002) Differential gene expression in astrocytes from human normal and glaucomatous optic nerve head analyzed by cDNA microarray. Glia 38:45–64PubMedCrossRefGoogle Scholar
  4. 4.
    Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434PubMedCrossRefGoogle Scholar
  5. 5.
    Wilhelmsson U, Bushong EA, Price DL et al (2006) Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci U S A 103:17513–17518PubMedCrossRefGoogle Scholar
  6. 6.
    Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647PubMedCrossRefGoogle Scholar
  7. 7.
    Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35PubMedCrossRefGoogle Scholar
  8. 8.
    Wilhelmsson U, Li L, Pekna M et al (2004) Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. J Neurosci 24:5016–5021PubMedCrossRefGoogle Scholar
  9. 9.
    Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11:400–407PubMedCrossRefGoogle Scholar
  10. 10.
    Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2:679–689PubMedCrossRefGoogle Scholar
  11. 11.
    Seifert G, Schilling K, Steinhauser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194–206PubMedCrossRefGoogle Scholar
  12. 12.
    Correa-Cerro LS, Mandell JW (2007) Molecular mechanisms of astrogliosis: new approaches with mouse genetics. J Neuropathol Exp Neurol 66:169–176PubMedCrossRefGoogle Scholar
  13. 13.
    Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430–440PubMedCrossRefGoogle Scholar
  14. 14.
    Li L, Lundkvist A, Andersson D et al (2008) Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 28:468–481PubMedCrossRefGoogle Scholar
  15. 15.
    Macauley SL, Pekny M, Sands MS (2011) The role of attenuated astrocyte activation in infantile neuronal ceroid lipofuscinosis. J Neurosci 31:15575–15585PubMedCrossRefGoogle Scholar
  16. 16.
    Kosaka T, Hama K (1986) Three-dimensional structure of astrocytes in the rat dentate gyrus. J Comp Neurol 249:242–260PubMedCrossRefGoogle Scholar
  17. 17.
    Grosche J, Matyash V, Moller T et al (1999) Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2:139–143PubMedCrossRefGoogle Scholar
  18. 18.
    Bushong EA, Martone ME, Jones YZ et al (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192PubMedGoogle Scholar
  19. 19.
    Bushong EA, Martone ME, Ellisman MH (2004) Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci 22:73–86PubMedCrossRefGoogle Scholar
  20. 20.
    Haber M, Murai KK (2006) Reshaping neuron-glial communication at hippocampal synapses. Neuron Glia Biol 2:59–66PubMedCrossRefGoogle Scholar
  21. 21.
    Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129:877–896PubMedCrossRefGoogle Scholar
  22. 22.
    Pellerin L, Bouzier-Sore AK, Aubert A et al (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55:1251–1262PubMedCrossRefGoogle Scholar
  23. 23.
    Rouach N, Koulakoff A, Abudara V et al (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322:1551–1555PubMedCrossRefGoogle Scholar
  24. 24.
    Suzuki A, Stern SA, Bozdagi O et al (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823PubMedCrossRefGoogle Scholar
  25. 25.
    Ullian EM, Sapperstein SK, Christopherson KS et al (2001) Control of synapse number by glia. Science 291:657–661PubMedCrossRefGoogle Scholar
  26. 26.
    Ullian EM, Christopherson KS, Barres BA (2004) Role for glia in synaptogenesis. Glia 47:209–216PubMedCrossRefGoogle Scholar
  27. 27.
    Christopherson KS, Ullian EM, Stokes CC et al (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–433PubMedCrossRefGoogle Scholar
  28. 28.
    Eroglu C, Barres BA (2010) Regulation of synaptic connectivity by glia. Nature 468:223–231PubMedCrossRefGoogle Scholar
  29. 29.
    Liebner S, Czupalla CJ, Wolburg H (2011) Current concepts of blood–brain barrier development. Int J Dev Biol 55:467–476Google Scholar
  30. 30.
    Zonta M, Angulo MC, Gobbo S et al (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50PubMedCrossRefGoogle Scholar
  31. 31.
    Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431:195–199PubMedCrossRefGoogle Scholar
  32. 32.
    Oberheim NA, Takano T, Han X et al (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287PubMedCrossRefGoogle Scholar
  33. 33.
    Matyash V, Kettenmann H (2010) Heterogeneity in astrocyte morphology and physiology. Brain Res Rev 63:2–10PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20:588–594PubMedCrossRefGoogle Scholar
  35. 35.
    Beckervordersandforth R, Tripathi P, Ninkovic J et al (2010) In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells. Cell Stem Cell 7:744–758PubMedCrossRefGoogle Scholar
  36. 36.
    Ståhlberg A, Andersson D, Aurelius J et al. (2011) Defining cell populations with single-cell gene expression profiling: correlations and identification of astrocyte subpopulations. Nucleic Acids Res 39:e24Google Scholar
  37. 37.
    Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25:1439–1451PubMedCrossRefGoogle Scholar
  38. 38.
    Okada S, Nakamura M, Katoh H et al (2006) Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12:829–834PubMedCrossRefGoogle Scholar
  39. 39.
    Herrmann JE, Imura T, Song B et al (2008) STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci 28:7231–7243PubMedCrossRefGoogle Scholar
  40. 40.
    Renault-Mihara F, Okada S, Shibata S et al (2008) Spinal cord injury: emerging beneficial role of reactive astrocytes’ migration. Int J Biochem Cell Biol 40:1649–1653PubMedCrossRefGoogle Scholar
  41. 41.
    Voskuhl RR, Peterson RS, Song B et al (2009) Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci 29:11511–11522PubMedCrossRefGoogle Scholar
  42. 42.
    Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156PubMedCrossRefGoogle Scholar
  43. 43.
    Delaney CL, Brenner M, Messing A (1996) Conditional ablation of cerebellar astrocytes in postnatal transgenic mice. J Neurosci 16:6908–6918PubMedGoogle Scholar
  44. 44.
    Bush TG, Puvanachandra N, Horner CH et al (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23:297–308PubMedCrossRefGoogle Scholar
  45. 45.
    Sofroniew MV, Bush TG, Blumauer N et al (1999) Genetically-targeted and conditionally-regulated ablation of astroglial cells in the central, enteric and peripheral nervous systems in adult transgenic mice. Brain Res 835:91–95PubMedCrossRefGoogle Scholar
  46. 46.
    Faulkner JR, Herrmann JE, Woo MJ et al (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155PubMedCrossRefGoogle Scholar
  47. 47.
    Garcia AD, Doan NB, Imura T et al (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 7:1233–1241PubMedCrossRefGoogle Scholar
  48. 48.
    Eliasson C, Sahlgren C, Berthold CH et al (1999) Intermediate filament protein partnership in astrocytes. J Biol Chem 274:23996–24006PubMedCrossRefGoogle Scholar
  49. 49.
    Pekny M, Johansson CB, Eliasson C et al (1999) Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J Cell Biol 145:503–514PubMedCrossRefGoogle Scholar
  50. 50.
    Lu YB, Iandiev I, Hollborn M et al (2011) Reactive glial cells: increased stiffness correlates with increased intermediate filament expression. FASEB J 25:624–631PubMedCrossRefGoogle Scholar
  51. 51.
    Lepekhin EA, Eliasson C, Berthold CH et al (2001) Intermediate filaments regulate astrocyte motility. J Neurochem 79:617–625PubMedCrossRefGoogle Scholar
  52. 52.
    Potokar M, Kreft M, Li L et al (2007) Cytoskeleton and vesicle mobility in astrocytes. Traffic 8:12–20PubMedCrossRefGoogle Scholar
  53. 53.
    Potokar M, Stenovec M, Gabrijel M et al (2010) Intermediate filaments attenuate stimulation-dependent mobility of endosomes/lysosomes in astrocytes. Glia 58:1208–1219PubMedGoogle Scholar
  54. 54.
    Ding M, Eliasson C, Betsholtz C et al (1998) Altered taurine release following hypotonic stress in astrocytes from mice deficient for GFAP and vimentin. Brain Res Mol Brain Res 62:77–81PubMedCrossRefGoogle Scholar
  55. 55.
    Cho KS, Yang L, Lu B et al (2005) Re-establishing the regenerative potential of central nervous system axons in postnatal mice. J Cell Sci 118:863–872PubMedCrossRefGoogle Scholar
  56. 56.
    Menet V, Prieto M, Privat A et al (2003) Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. Proc Natl Acad Sci U S A 100:8999–9004PubMedCrossRefGoogle Scholar
  57. 57.
    Kinouchi R, Takeda M, Yang L et al (2003) Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin. Nat Neurosci 6:863–868PubMedCrossRefGoogle Scholar
  58. 58.
    Widestrand A, Faijerson J, Wilhelmsson U et al (2007) Increased neurogenesis and astrogenesis from neural progenitor cells grafted in the hippocampus of GFAP−/− Vim−/− mice. Stem Cells 25:2619–2627PubMedCrossRefGoogle Scholar
  59. 59.
    Davies SJ, Goucher DR, Doller C et al (1999) Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J Neurosci 19:5810–5822PubMedGoogle Scholar
  60. 60.
    Goldshmit Y, Galea MP, Wise G et al (2004) Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice. J Neurosci 24:10064–10073PubMedCrossRefGoogle Scholar
  61. 61.
    Busch SA, Silver J (2007) The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 17:120–127PubMedCrossRefGoogle Scholar
  62. 62.
    Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol 209:294–301PubMedCrossRefGoogle Scholar
  63. 63.
    Alilain WJ, Horn KP, Hu H et al (2011) Functional regeneration of respiratory pathways after spinal cord injury. Nature 475:196–200PubMedCrossRefGoogle Scholar
  64. 64.
    Myer DJ, Gurkoff GG, Lee SM et al (2006) Essential protective roles of reactive astrocytes in traumatic brain injury. Brain 129:2761–2772PubMedCrossRefGoogle Scholar
  65. 65.
    Kimelberg HK, Nedergaard M (2010) Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics 7:338–353PubMedCrossRefGoogle Scholar
  66. 66.
    Parpura V, Heneka MT, Montana V et al (2012) Glial cells in (patho)physiology. J Neurochem 121:4–27PubMedCrossRefGoogle Scholar
  67. 67.
    Pekna M, Pekny M, Nilsson M (2012) Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke, in press.Google Scholar
  68. 68.
    Lovatt D, Sonnewald U, Waagepetersen HS et al (2007) The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27:12255–12266PubMedCrossRefGoogle Scholar
  69. 69.
    Cahoy JD, Emery B, Kaushal A et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278PubMedCrossRefGoogle Scholar
  70. 70.
    Lipton SA, Gu Z, Nakamura T (2007) Inflammatory mediators leading to protein misfolding and uncompetitive/fast off-rate drug therapy for neurodegenerative disorders. Int Rev Neurobiol 82:1–27PubMedCrossRefGoogle Scholar
  71. 71.
    Nilsson M, Pekny M (2007) Enriched environment and astrocytes in central nervous system regeneration. J Rehabil Med 39:345–352PubMedCrossRefGoogle Scholar
  72. 72.
    Deller T, Frotscher M (1997) Lesion-induced plasticity of central neurons: sprouting of single fibres in the rat hippocampus after unilateral entorhinal cortex lesion. Prog Neurobiol 53:687–727PubMedCrossRefGoogle Scholar
  73. 73.
    Turner DA, Buhl EH, Hailer NP et al (1998) Morphological features of the entorhinal-hippocampal connection. Prog Neurobiol 55:537–562PubMedCrossRefGoogle Scholar
  74. 74.
    Deller T, Del Turco D, Rappert A et al (2007) Structural reorganization of the dentate gyrus following entorhinal denervation: species differences between rat and mouse. Prog Brain Res 163:501–528PubMedCrossRefGoogle Scholar
  75. 75.
    Steward O, Kelley MS, Torre ER (1993) The process of reinnervation in the dentate gyrus of adult rats: temporal relationship between changes in the levels of glial fibrillary acidic protein (GFAP) and GFAP mRNA in reactive astrocytes. Exp Neurol 124:167–183PubMedCrossRefGoogle Scholar
  76. 76.
    Steward O, Torre ER, Phillips LL et al (1990) The process of reinnervation in the dentate gyrus of adult rats: time course of increases in mRNA for glial fibrillary acidic protein. J Neurosci 10:2373–2384PubMedGoogle Scholar
  77. 77.
    Rose G, Lynch G, Cotman CW (1976) Hypertrophy and redistribution of astrocytes in the deafferented dentate gyrus. Brain Res Bull 1:87–92PubMedCrossRefGoogle Scholar
  78. 78.
    Krohn K, Laping NJ, Morgan TE et al (1995) Expression of vimentin increases in the hippocampus and cerebral cortex after entorhinal cortex lesioning and in response to transforming growth factor beta 1. J Neuroimmunol 56:53–63PubMedCrossRefGoogle Scholar
  79. 79.
    Jing R, Wilhelmsson U, Goodwill W et al (2007) Synemin is expressed in reactive astrocytes in neurotrauma and interacts differentially with vimentin and GFAP intermediate filament networks. J Cell Sci 120:1267–1277PubMedCrossRefGoogle Scholar
  80. 80.
    Jensen MB, Finsen B, Zimmer J (1997) Morphological and immunophenotypic microglial changes in the denervated fascia dentata of adult rats: correlation with blood–brain barrier damage and astroglial reactions. Exp Neurol 143:103–116PubMedCrossRefGoogle Scholar
  81. 81.
    Dehn D, Burbach GJ, Schafer R et al (2006) NG2 upregulation in the denervated rat fascia dentata following unilateral entorhinal cortex lesion. Glia 53:491–500PubMedCrossRefGoogle Scholar
  82. 82.
    Deller T, Haas CA, Frotscher M (2000) Reorganization of the rat fascia dentata after a unilateral entorhinal cortex lesion. Role of the extracellular matrix. Ann NY Acad Sci 911:207–220PubMedCrossRefGoogle Scholar
  83. 83.
    Owens T, Babcock AA, Millward JM et al (2005) Cytokine and chemokine inter-regulation in the inflamed or injured CNS. Brain Res Brain Res Rev 48:178–184PubMedCrossRefGoogle Scholar
  84. 84.
    Bechmann I, Nitsch R (1997) Astrocytes and microglial cells incorporate degenerating fibers following entorhinal lesion: a light, confocal, and electron microscopical study using a phagocytosis-dependent labeling technique. Glia 20:145–154PubMedCrossRefGoogle Scholar
  85. 85.
    Vuksic M, Del Turco D, Vlachos A et al (2011) Unilateral entorhinal denervation leads to long-lasting dendritic alterations of mouse hippocampal granule cells. Exp Neurol 230:176–185, Epub 2011 Apr 22PubMedCrossRefGoogle Scholar
  86. 86.
    Steward O, Cotman CW, Lynch GS (1974) Growth of a new fiber projection in the brain of adult rats: re-innervation of the dentate gyrus by the contralateral entorhinal cortex following ipsilateral entorhinal lesions. Exp Brain Res 20:45–66PubMedCrossRefGoogle Scholar
  87. 87.
    Guthrie KM, Nguyen T, Gall CM (1995) Insulin-like growth factor-1 mRNA is increased in deafferented hippocampus: spatiotemporal correspondence of a trophic event with axon sprouting. J Comp Neurol 352:147–160PubMedCrossRefGoogle Scholar
  88. 88.
    Eijkenboom M, Blokland A, van der Staay FJ (2000) Modelling cognitive dysfunctions with bilateral injections of ibotenic acid into the rat entorhinal cortex. Neuroscience 101:27–39PubMedCrossRefGoogle Scholar
  89. 89.
    Kadish I, Van Groen T (2003) Differences in lesion-induced hippocampal plasticity between mice and rats. Neuroscience 116:499–509PubMedCrossRefGoogle Scholar
  90. 90.
    Kelley MS, Steward O (1996) The process of reinnervation in the dentate gyrus of adult rats: physiological events at the time of the lesion and during the early postlesion period. Exp Neurol 139:73–82PubMedCrossRefGoogle Scholar
  91. 91.
    Gwag BJ, Sessler F, Kimmerer K et al (1994) Neurotrophic factor mRNA expression in dentate gyrus is increased following angular bundle transection. Brain Res 647:23–29PubMedCrossRefGoogle Scholar
  92. 92.
    Deller T, Frotscher M, Nitsch R (1995) Morphological evidence for the sprouting of inhibitory commissural fibers in response to the lesion of the excitatory entorhinal input to the rat dentate gyrus. J Neurosci 15:6868–6878PubMedGoogle Scholar
  93. 93.
    Jensen MB, Hegelund IV, Poulsen FR et al (1999) Microglial reactivity correlates to the density and the myelination of the anterogradely degenerating axons and terminals following perforant path denervation of the mouse fascia dentata. Neuroscience 93:507–518PubMedCrossRefGoogle Scholar
  94. 94.
    Del Turco D, Woods AG, Gebhardt C et al (2003) Comparison of commissural sprouting in the mouse and rat fascia dentata after entorhinal cortex lesion. Hippocampus 13:685–699PubMedCrossRefGoogle Scholar
  95. 95.
    Sihlbom C, Wilhelmsson U, Li L et al (2007) 14-3-3 Expression in denervated hippocampus after entorhinal cortex lesion assessed by culture-derived isotope tags in quantitative proteomics. J Proteome Res 6:3491–3500PubMedCrossRefGoogle Scholar
  96. 96.
    Rosenblum WI, El-Sabban F (1977) Effects of combined parenchymal and vascular injury on platelet aggregation in pial arterioles of living mice: evidence for release of aggregate-inhibiting materials. Stroke 8:691–693PubMedCrossRefGoogle Scholar
  97. 97.
    Watson BD, Dietrich WD, Busto R et al (1985) Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol 17:497–504PubMedCrossRefGoogle Scholar
  98. 98.
    Dietrich WD, Watson BD, Busto R et al (1987) Photochemically induced cerebral infarction. I. Early microvascular alterations. Acta Neuropathol 72:315–325PubMedCrossRefGoogle Scholar
  99. 99.
    Boquillon M, Boquillon JP, Bralet J (1992) Photochemically induced, graded cerebral infarction in the mouse by laser irradiation evolution of brain edema. J Pharmacol Toxicol Methods 27:1–6PubMedCrossRefGoogle Scholar
  100. 100.
    Grome JJ, Gojowczyk G, Hofmann W et al (1988) Quantitation of photochemically induced focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 8:89–95PubMedCrossRefGoogle Scholar
  101. 101.
    Demougeot C, Bertrand N, Prigent-Tessier A et al (2003) Reversible loss of N-acetyl-aspartate in rats subjected to long-term focal cerebral ischemia. J Cereb Blood Flow Metab 23:482–489PubMedCrossRefGoogle Scholar
  102. 102.
    Fujioka M, Taoka T, Matsuo Y et al (1999) Novel brain ischemic change on MRI. Delayed ischemic hyperintensity on T1-weighted images and selective neuronal death in the caudoputamen of rats after brief focal ischemia. Stroke 30:1043–1046PubMedCrossRefGoogle Scholar
  103. 103.
    Yao H, Sugimori H, Fukuda K et al (2003) Photothrombotic middle cerebral artery occlusion and reperfusion laser system in spontaneously hypertensive rats. Stroke 34:2716–2721PubMedCrossRefGoogle Scholar
  104. 104.
    Petito CK, Morgello S, Felix JC et al (1990) The two patterns of reactive astrocytosis in postischemic rat brain. J Cereb Blood Flow Metab 10:850–859PubMedCrossRefGoogle Scholar
  105. 105.
    Brenner M (1994) Structure and transcriptional regulation of the GFAP gene. Brain Pathol 4:245–257PubMedCrossRefGoogle Scholar
  106. 106.
    Schroeter M, Schiene K, Kraemer M et al (1995) Astroglial responses in photochemically induced focal ischemia of the rat cortex. Exp Brain Res 106:1–6PubMedCrossRefGoogle Scholar
  107. 107.
    Schroeter M, Franke C, Stoll G et al (2001) Dynamic changes of magnetic resonance imaging abnormalities in relation to inflammation and glial responses after photothrombotic cerebral infarction in the rat brain. Acta Neuropathol 101:114–122PubMedGoogle Scholar
  108. 108.
    Nowicka D, Rogozinska K, Aleksy M et al (2008) Spatiotemporal dynamics of astroglial and microglial responses after photothrombotic stroke in the rat brain. Acta Neurobiol Exp 68:155–168Google Scholar
  109. 109.
    Snape MF, Baldwin HA, Cross AJ et al (1993) The effects of chlormethiazole and nimodipine on cortical infarct area after focal cerebral ischaemia in the rat. Neuroscience 53:837–844PubMedCrossRefGoogle Scholar
  110. 110.
    Bailey SJ, Wood NI, Samson NA et al (1995) Failure of isradipine to reduce infarct size in mouse, gerbil, and rat models of cerebral ischemia. Stroke 26:2177–2183PubMedCrossRefGoogle Scholar
  111. 111.
    De Ryck M, Keersmaekers R, Duytschaever H et al (1996) Lubeluzole protects sensorimotor function and reduces infarct size in a photochemical stroke model in rats. J Pharmacol Exp Ther 279:748–758PubMedGoogle Scholar
  112. 112.
    Chang YY, Fujimura M, Morita-Fujimura Y et al (1999) Neuroprotective effects of an antioxidant in cortical cerebral ischemia: prevention of early reduction of the apurinic/apyrimidinic endonuclease DNA repair enzyme. Neurosci Lett 277:61–64PubMedCrossRefGoogle Scholar
  113. 113.
    Kharlamov A, Guidotti A, Costa E et al (1993) Semisynthetic sphingolipids prevent protein kinase C translocation and neuronal damage in the perifocal area following a photochemically induced thrombotic brain cortical lesion. J Neurosci 13:2483–2494PubMedGoogle Scholar
  114. 114.
    Wood NI, Sopesen BV, Roberts JC et al (1996) Motor dysfunction in a photothrombotic focal ischaemia model. Behav Brain Res 78:113–120PubMedCrossRefGoogle Scholar
  115. 115.
    Shanina EV, Schallert T, Witte OW et al (2006) Behavioral recovery from unilateral photothrombotic infarcts of the forelimb sensorimotor cortex in rats: role of the contralateral cortex. Neuroscience 139:1495–1506PubMedCrossRefGoogle Scholar
  116. 116.
    Sugimori H, Yao H, Ooboshi H et al (2004) Krypton laser-induced photothrombotic distal middle cerebral artery occlusion without craniectomy in mice. Brain Res Brain Res Protoc 13:189–196PubMedCrossRefGoogle Scholar
  117. 117.
    Hu X, Wester P, Brannstrom T et al (2001) Progressive and reproducible focal cortical ischemia with or without late spontaneous reperfusion generated by a ring-shaped, laser-driven photothrombotic lesion in rats. Brain Res Brain Res Protoc 7:76–85PubMedCrossRefGoogle Scholar
  118. 118.
    Schroeter M, Jander S, Huitinga I et al (1997) Phagocytic response in photochemically induced infarction of rat cerebral cortex. The role of resident microglia. Stroke 28:382–386PubMedCrossRefGoogle Scholar
  119. 119.
    Schroeter M, Jander S, Witte OW et al (1994) Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion. J Neuroimmunol 55:195–203PubMedCrossRefGoogle Scholar
  120. 120.
    Jander S, Kraemer M, Schroeter M et al (1995) Lymphocytic infiltration and expression of intercellular adhesion molecule-1 in photochemically induced ischemia of the rat cortex. J Cereb Blood Flow Metab 15:42–51PubMedCrossRefGoogle Scholar
  121. 121.
    Madinier A, Bertrand N, Mossiat C et al (2008) Microglial involvement in neuroplastic changes following focal brain ischemia in rats. PLoS One 4:e8101CrossRefGoogle Scholar
  122. 122.
    Buchkremer-Ratzmann I, Witte OW (1997) Pharmacological reduction of electrophysiological diaschisis after photothrombotic ischemia in rat neocortex. Eur J Pharmacol 320:103–109PubMedCrossRefGoogle Scholar
  123. 123.
    Elliot KA, Rosenfeld M (1958) Anaerobic glycolysis in brain slices after deprivation of oxygen and glucose. Can J Biochem Physiol 36:721–730PubMedCrossRefGoogle Scholar
  124. 124.
    Goldberg WJ, Kadingo RM, Barrett JN (1986) Effects of ischemia-like conditions on cultured neurons: protection by low Na+, low Ca2+ solutions. J Neurosci 6:3144–3151PubMedGoogle Scholar
  125. 125.
    Dugan LL, Kim-Han JS (2004) Astrocyte mitochondria in in vitro models of ischemia. J Bioenerg Biomembr 36:317–321PubMedCrossRefGoogle Scholar
  126. 126.
    Xu L, Sapolsky RM, Giffard RG (2001) Differential sensitivity of murine astrocytes and neurons from different brain regions to injury. Exp Neurol 169:416–424PubMedCrossRefGoogle Scholar
  127. 127.
    Almeida A, Delgado-Esteban M, Bolanos JP et al (2002) Oxygen and glucose deprivation induces mitochondrial dysfunction and oxidative stress in neurones but not in astrocytes in primary culture. J Neurochem 81:207–217PubMedCrossRefGoogle Scholar
  128. 128.
    Ouyang YB, Xu LJ, Sun YJ et al (2006) Overexpression of inducible heat shock protein 70 and its mutants in astrocytes is associated with maintenance of mitochondrial physiology during glucose deprivation stress. Cell Stress Chaperones 11:180–186PubMedCrossRefGoogle Scholar
  129. 129.
    Badawi Y, Ramamoorthy P, Shi H (2012) Hypoxia inducible factor 1 protects hypoxic astrocytes against glutamate toxicity. ASN Neuro 4:231–241Google Scholar
  130. 130.
    Vangeison G, Carr D, Federoff HJ et al (2008) The good, the bad, and the cell type-specific roles of hypoxia inducible factor-1 alpha in neurons and astrocytes. J Neurosci 28:1988–1993PubMedCrossRefGoogle Scholar
  131. 131.
    Bondarenko A, Chesler M (2001) Calcium dependence of rapid astrocyte death induced by transient hypoxia, acidosis, and extracellular ion shifts. Glia 34:143–149PubMedCrossRefGoogle Scholar
  132. 132.
    Maloney-Wilensky E, Gracias V, Itkin A et al (2009) Brain tissue oxygen and outcome after severe traumatic brain injury: a systematic review. Crit Care Med 37:2057–2063PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Milos Pekny
    • 1
    Email author
  • Michelle Porritt
    • 1
  • Yolanda de Pablo
    • 1
  • Marcela Pekna
    • 1
  • Ulrika Wilhelmsson
    • 1
  1. 1.Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and PhysiologySahlgrenska Academy at the University of GothenburgGothenburgSweden

Personalised recommendations