Synthetic mRNAs with Superior Translation and Stability Properties

  • Ewa Grudzien-Nogalska
  • Joanna Kowalska
  • Wei Su
  • Andreas N. Kuhn
  • Sergey V. Slepenkov
  • Edward Darzynkiewicz
  • Ugur Sahin
  • Jacek Jemielity
  • Robert E. Rhoads
Part of the Methods in Molecular Biology book series (MIMB, volume 969)


The translational efficiency and stability of synthetic mRNA in both cultured cells and whole animals can be improved by incorporation of modified cap structures at the 5′-end. mRNAs are synthesized in vitro by a phage RNA polymerase transcribing a plasmid containing the mRNA sequence in the presence of all four NTPs plus a cap dinucleotide. Modifications in the cap dinucleotide at the 2′- or 3′-positions of m7Guo, or modifications in the polyphosphate chain, can improve both translational efficiency and stability of the mRNA, thereby increasing the amount and duration of protein expression. In the context of RNA-based immunotherapy, the latter is especially important for antigen production and presentation by dendritic cells. Protocols are presented for synthesis of modified mRNAs, their introduction into cells and whole animals, and measurement of their translational efficiency and stability.

Key words

Boranophosphate Cap analogs Decapping Gene therapy Immunotherapy mRNA ­stability Nucleoporation Phosphorothioate Protein expression Translational efficiency 



This research was supported by grant GM20818 from the National Institutes of Health of the USA (to R.E.R), by the Combined Project Grant SFB 432 from the German Research Foundation (to U.S.), by GO-Bio funding from the German Federal Ministry of Education and Research (to U.S.), by grants NN204 089438 (to J.J.) and NN301 096339 (to E.D.) from the Polish Ministry of Science and Higher Education, and by grant 55005 604 from the Howard Hughes Medical Institute (to E.D.).


  1. 1.
    Contreras R, Cheroutre H, Degrave W, Fiers W (1982) Simple, efficient in vitro synthesis of capped RNA useful for direct expression of cloned eukaryotic genes. Nucleic Acids Res 10:6353–6362PubMedCrossRefGoogle Scholar
  2. 2.
    Konarska MM, Padgett RA, Sharp PA (1984) Recognition of a cap structure in splicing in vitro of mRNA precursors. Cell 38:731–736PubMedCrossRefGoogle Scholar
  3. 3.
    Yisraeli JK, Melton DA (1989) Synthesis of long, capped transcripts in vitro by SP6 and T7 RNA polymerases. Meth Enzymol 180:42–50PubMedCrossRefGoogle Scholar
  4. 4.
    Martin SA, Moss B (1975) Modification of RNA by mRNA guanylyltransferase and mRNA (guanine-7-)methyltransferase from vaccinia virions. J Biol Chem 250:9330–9335PubMedGoogle Scholar
  5. 5.
    Pasquinelli AE, Dahlberg JE, Lund E (1995) Reverse 5′ caps in RNAs made in vitro by phage RNA polymerases. RNA 1:957–967PubMedGoogle Scholar
  6. 6.
    Marcotrigiano J, Gingras A-C, Sonenberg N, Burley SK (1997) Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89:951–961PubMedCrossRefGoogle Scholar
  7. 7.
    Matsuo H, Li H, McGuire AM, Fletcher CM, Gingras A-C, Sonenberg N, Wagner G (1997) Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein. Nat Struct Biol 4:717–724PubMedCrossRefGoogle Scholar
  8. 8.
    Deshmukh MV, Jones BN, Quang-Dang DU, Flinders J, Floor SN, Kim C, Jemielity J, Kalek M, Darzynkiewicz E, Gross JD (2008) mRNA decapping is promoted by an RNA-binding channel in Dcp2. Mol Cell 29:324–336PubMedCrossRefGoogle Scholar
  9. 9.
    Stepinski J, Waddell C, Stolarski R, Darzynkiewicz E, Rhoads RE (2001) Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogues 7-methyl(3′-O-methyl)GpppG and 7-methyl(3′-deoxy)GpppG. RNA 7:1486–1495PubMedGoogle Scholar
  10. 10.
    Jemielity J, Fowler T, Zuberek J, Stepinski J, Lewdorowicz M, Niedzwiecka A, Stolarski R, Darzynkiewicz E, Rhoads RE (2003) Novel “anti-reverse” cap analogues with superior translational properties. RNA 9:1108–1122PubMedCrossRefGoogle Scholar
  11. 11.
    Peng Z-H, Sharma V, Singleton SF, Gershon PD (2002) Synthesis and application of a chain-terminating dinucleotide mRNA cap analog. Org Lett 4:161–164PubMedCrossRefGoogle Scholar
  12. 12.
    Kore AR, Shanmugasundaram M, Charles I, Cheng AM, Barta TJ (2007) Synthesis and application of 2′-fluoro-substituted cap analogs. Bioorg Med Chem Lett 17:5295–5299PubMedCrossRefGoogle Scholar
  13. 13.
    Kore AR, Shanmugasundaram M, Vlassov AV (2008) Synthesis and application of a new 2′,3′-isopropylidene guanosine substituted cap analog. Bioorg Med Chem Lett 18:4828–4832PubMedCrossRefGoogle Scholar
  14. 14.
    Kore AR, Shanmugasundaram M, Charles I, Vlassov AV, Barta TJ (2009) Locked nucleic acid (LNA)-modified dinucleotide mRNA cap analogue: synthesis, enzymatic incorporation, and utilization. J Am Chem Soc 131:6364–6365PubMedCrossRefGoogle Scholar
  15. 15.
    Grudzien E, Kalek M, Jemielity J, Darzynkiewicz E, Rhoads RE (2006) Differential inhibition of mRNA degradation pathways by novel cap analogs. J Biol Chem 281:1857–1867PubMedCrossRefGoogle Scholar
  16. 16.
    Coller J, Parker R (2004) Eukaryotic mRNA decapping. Annu Rev Biochem 73:861–890PubMedCrossRefGoogle Scholar
  17. 17.
    Wang Z, Jiao X, Carr-Schmid A, Kiledjian M (2002) The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc Natl Acad Sci USA 99:12663–12668PubMedCrossRefGoogle Scholar
  18. 18.
    Lykke-Andersen J (2002) Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol Cell Biol 22:8114–8121PubMedCrossRefGoogle Scholar
  19. 19.
    van Dijk E, Cougot N, Meyer S, Babajko S, Wahle E, Seraphin B (2002) Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J 21:6915–6924PubMedCrossRefGoogle Scholar
  20. 20.
    Steiger M, Carr-Schmid A, Schwartz DC, Kiledjian M, Parker R (2003) Analysis of recombinant yeast decapping enzyme. RNA 9:231–238PubMedCrossRefGoogle Scholar
  21. 21.
    Grudzien-Nogalska E, Jemielity J, Kowalska J, Darzynkiewicz E, Rhoads RE (2007) Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells. RNA 13:1745–1755PubMedCrossRefGoogle Scholar
  22. 22.
    Kowalska J, Lewdorowicz M, Zuberek J, Grudzien-Nogalska E, Bojarska E, Stepinski J, Rhoads RE, Darzynkiewicz E, Davis RE, Jemielity J (2008) Synthesis and characterization of mRNA cap analogs containing phosphorothioate substitutions that bind tightly to eIF4E and are resistant to the decapping pyrophosphatase DcpS. RNA 14:1119–1131PubMedCrossRefGoogle Scholar
  23. 23.
    Su W, Slepenkov S, Grudzien-Nogalska E, Kowalska J, Kulis M, Zuberek J, Lukaszewicz M, Darzynkiewicz E, Jemielity J, Rhoads RE (2011) Translation, stability, and resistance to decapping of mRNAs containing caps substituted in the triphosphate chain with BH3, Se, and NH. RNA 17:978–988PubMedCrossRefGoogle Scholar
  24. 24.
    Kuhn AN, Diken M, Kreiter S, Selmi A, Kowalska J, Jemielity J, Darzynkiewicz E, Huber C, Tureci O, Sahin U (2010) Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther 17:961–971PubMedCrossRefGoogle Scholar
  25. 25.
    Diken M, Kreiter S, Selmi A, Britten CM, Huber C, Tureci O, Sahin U (2011) Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther 18:702–708PubMedCrossRefGoogle Scholar
  26. 26.
    Kowalska J, Lewdorowicz M, Zuberek J, Bojarska E, Wojcik J, Cohen LS, Davis RE, Stepinski J, Stolarski R, Darzynkiewicz E, Jemielity J (2005) Synthesis and properties of mRNA cap analogs containing phosphorothioate moiety in 5′,5′-triphosphate chain. Nucleos Nucleot Nucl Acids 24:595–600CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ewa Grudzien-Nogalska
    • 1
  • Joanna Kowalska
    • 2
  • Wei Su
    • 1
  • Andreas N. Kuhn
    • 3
    • 4
  • Sergey V. Slepenkov
    • 1
  • Edward Darzynkiewicz
    • 2
  • Ugur Sahin
    • 3
    • 5
    • 4
  • Jacek Jemielity
    • 2
  • Robert E. Rhoads
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyLousisiana State University Health Sciences CenterShreveportUSA
  2. 2.Division of Biophysics, Institute of Experimental Physics, Faculty of PhysicsUniversity of WarsawWarsawPoland
  3. 3.TRON-Translational Oncology at the University Medical Center MainzMainzGermany
  4. 4.Ribological, Biontech AGMainzGermany
  5. 5.III. Medical DepartmentUniversity Medical Center of the Johannes Gutenberg-University MainzMainzGermany

Personalised recommendations