Cell Senescence pp 355-371

Part of the Methods in Molecular Biology book series (MIMB, volume 965) | Cite as

Profiling the Metabolic Signature of Senescence

  • Florian M. Geier
  • Silke Fuchs
  • Gabriel Valbuena
  • Armand M. Leroi
  • Jacob G. Bundy

Abstract

Aging is a complex process, which involves changes in different cellular functions that all can be integrated on the metabolite level. This means that different gene regulation pathways that affect aging might lead to similar changes in metabolism and result in a metabolic signature of senescence. In this chapter, we describe how to establish a metabolic signature of senescence by analyzing the metabolome of various longevity mutants of the model organism Caenorhabditis elegans using gas chromatography-mass spectrometry (GC-MS). Since longevity-associated genes exist for other model organisms and humans, this analysis could be universally applied to body fluids or whole tissue samples for studing the relationship between senescence and metabolism.

Key words

Aging Metabolomics Caenorhabditis elegans Cellular senescence GC-MS 

References

  1. 1.
    Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512PubMedCrossRefGoogle Scholar
  2. 2.
    McCay CM, Crowell MF (1934) Prolonging the life span. Sci Mon 39:405–414Google Scholar
  3. 3.
    Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464PubMedCrossRefGoogle Scholar
  4. 4.
    Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247PubMedCrossRefGoogle Scholar
  5. 5.
    Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Frohlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11:1305–1314PubMedCrossRefGoogle Scholar
  6. 6.
    Shmookler Reis RJ, Xu L, Lee H, Chae M, Thaden JJ, Bharill P, Tazearslan C, Siegel E, Alla R, Zimniak P, Ayyadevara S (2011) Modulation of lipid biosynthesis contributes to stress resistance and longevity of C. elegans mutants. Aging 3:125–147PubMedGoogle Scholar
  7. 7.
    Lund J, Tedesco P, Duke K, Wang J, Kim SK, Johnson TE (2002) Transcriptional profile of aging in C. elegans. Curr Biol 12:1566–1573PubMedCrossRefGoogle Scholar
  8. 8.
    Holt SJ, Riddle DL (2003) SAGE surveys C. elegans carbohydrate metabolism: evidence for an anaerobic shift in the long-lived dauer larva. Mech Ageing Dev 124:779–800PubMedCrossRefGoogle Scholar
  9. 9.
    Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161PubMedCrossRefGoogle Scholar
  10. 10.
    Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189PubMedCrossRefGoogle Scholar
  11. 11.
    Butler JA, Ventura N, Johnson TE, Rea SL (2010) Long-lived mitochondrial (Mit) mutants of Caenorhabditis elegans utilize a novel metabolism. FASEB J 24:4977–4988PubMedCrossRefGoogle Scholar
  12. 12.
    Martin FP, Spanier B, Collino S, Montoliu I, Kolmeder C, Giesbertz P, Affolter M, Kussmann M, Daniel H, Kochhar S, Rezzi S (2011) Metabotyping of Caenorhabditis elegans and their culture media revealed unique metabolic phenotypes associated to amino acid deficiency and insulin-like signaling. J Proteome Res 10:990–1003PubMedCrossRefGoogle Scholar
  13. 13.
    Rezzi S, Martin FP, Shanmuganayagam D, Colman RJ, Nicholson JK, Weindruch R (2009) Metabolic shifts due to long-term caloric restriction revealed in nonhuman primates. Exp Gerontol 44:356–362PubMedCrossRefGoogle Scholar
  14. 14.
    Fuchs S, Bundy JG, Davies SK, Viney JM, Swire JS, Leroi AM (2010) A metabolic signature of long life in Caenorhabditis elegans. BMC Biol 8:14PubMedCrossRefGoogle Scholar
  15. 15.
    Geier FM, Want EJ, Leroi AM, Bundy JG (2011) Cross-platform comparison of Caenorhabditis elegans tissue extraction strategies for comprehensive metabolome coverage. Anal Chem 83:3730–3736PubMedCrossRefGoogle Scholar
  16. 16.
    Liebeke M, Bundy JG (2011) Tissue disruption and extraction methods for metabolic profiling of an invertebrate sentinel species. Metabolomics 8:819–830Google Scholar
  17. 17.
    Rabinowitz JD, Kimball E (2007) Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Anal Chem 79:6167–6173PubMedCrossRefGoogle Scholar
  18. 18.
    Tredwell GD, Edwards-Jones B, Leak DJ, Bundy JG (2011) The development of metabolomic sampling procedures for Pichia pastoris, and baseline metabolome data. PLoS One 6:e16286PubMedCrossRefGoogle Scholar
  19. 19.
    Meyer H, Liebeke M, Lalk M (2010) A protocol for the investigation of the intracellular Staphylococcus aureus metabolome. Anal Biochem 401:250–259PubMedCrossRefGoogle Scholar
  20. 20.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedCrossRefGoogle Scholar
  21. 21.
    Masson P, Alves AC, Ebbels TM, Nicholson JK, Want EJ (2010) Optimization and evaluation of metabolite extraction protocols for untargeted metabolic profiling of liver samples by UPLC-MS. Anal Chem 82:7779–7786PubMedCrossRefGoogle Scholar
  22. 22.
    Want EJ, O’Maille G, Smith CA, Brandon TR, Uritboonthai W, Qin C, Trauger SA, Siuzdak G (2006) Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal Chem 78:743–752PubMedCrossRefGoogle Scholar
  23. 23.
    Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49:1137–1146PubMedCrossRefGoogle Scholar
  24. 24.
    Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, Nicholson JK (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2:2692–2703PubMedCrossRefGoogle Scholar
  25. 25.
    Fan WMT (1996) Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog Nucl Mag Res Spectrosc 28:161–219Google Scholar
  26. 26.
    Bothwell JH, Griffin JL (2011) An introduction to biological nuclear magnetic resonance spectroscopy. Biol Rev Camb Philos Soc 86:493–510PubMedCrossRefGoogle Scholar
  27. 27.
    Want EJ, Nordstrom A, Morita H, Siuzdak G (2007) From exogenous to endogenous: the inevitable imprint of mass spectrometry in metabolomics. J Proteome Res 6:459–468PubMedCrossRefGoogle Scholar
  28. 28.
    Want E, Masson P (2011) Processing and analysis of GC/LC-MS-based metabolomics data. Methods Mol Biol 708:277–298PubMedCrossRefGoogle Scholar
  29. 29.
    Melamud E, Vastag L, Rabinowitz JD (2010) Metabolomic analysis and visualization engine for LC-MS data. Anal Chem 82:9818–9826PubMedCrossRefGoogle Scholar
  30. 30.
    Xia J, Wishart DS (2011) Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6:743–760PubMedCrossRefGoogle Scholar
  31. 31.
    Carroll AJ, Badger MR, Harvey Millar A (2010) The MetabolomeExpress Project: enabling web-based processing, analysis and transparent dissemination of GC/MS metabolomics datasets. BMC Bioinformatics 11:376PubMedCrossRefGoogle Scholar
  32. 32.
    Pluskal T, Castillo S, Villar-Briones A, Oresic M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:395PubMedCrossRefGoogle Scholar
  33. 33.
    Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787PubMedCrossRefGoogle Scholar
  34. 34.
    Veselkov KA, Vingara LK, Masson P, Robinette SL, Want E, Li JV, Barton RH, Boursier-Neyret C, Walther B, Ebbels TM, Pelczer I, Holmes E, Lindon JC, Nicholson JK (2011) Optimized preprocessing of ultra-performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information recovery. Anal Chem 83:5864–5872PubMedCrossRefGoogle Scholar
  35. 35.
    Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabonomics. J Proteome Res 6:469–479PubMedCrossRefGoogle Scholar
  36. 36.
    Stacklies W, Redestig H, Scholz M, Walther D, Selbig J (2007) pcaMethods–a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23:1164–1167PubMedCrossRefGoogle Scholar
  37. 37.
    Ebbels TM, Keun HC, Beckonert OP, Bollard ME, Lindon JC, Holmes E, Nicholson JK (2007) Prediction and classification of drug toxicity using probabilistic modeling of temporal metabolic data: the consortium on metabonomic toxicology screening approach. J Proteome Res 6:4407–4422PubMedCrossRefGoogle Scholar
  38. 38.
    Cloarec O, Dumas ME, Craig A, Barton RH, Trygg J, Hudson J, Blancher C, Gauguier D, Lindon JC, Holmes E, Nicholson J (2005) Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal Chem 77:1282–1289PubMedCrossRefGoogle Scholar
  39. 39.
    Rocke DM, Durbin B (2003) Approximate variance-stabilizing transformations for gene-expression microarray data. Bioinformatics 19:966–972PubMedCrossRefGoogle Scholar
  40. 40.
    van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142PubMedCrossRefGoogle Scholar
  41. 41.
    Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly MA, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau DD, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan GE, Macinnis GD, Weljie AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD, Vogel HJ, Querengesser L (2007) HMDB: the human metabolome database. Nucleic Acids Res 35:D521–D526PubMedCrossRefGoogle Scholar
  42. 42.
    Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751PubMedCrossRefGoogle Scholar
  43. 43.
    Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the golm metabolome database. Bioinformatics 21:1635–1638PubMedCrossRefGoogle Scholar
  44. 44.
    Stein SE, Scott DR (1994) Optimization and testing of mass-spectral library search algorithms for compound identification. J Am Soc Mass Spectrom 5:859–866CrossRefGoogle Scholar
  45. 45.
    Kind T, Wohlgemuth G, do Lee Y, Lu Y, Palazoglu M, Shahbaz S, Fiehn O (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81:10038–10048PubMedCrossRefGoogle Scholar
  46. 46.
    Sansone SA, Fan T, Goodacre R, Griffin JL, Hardy NW, Kaddurah-Daouk R, Kristal BS, Lindon J, Mendes P, Morrison N, Nikolau B, Robertson D, Sumner LW, Taylor C, van der Werf M, van Ommen B, Fiehn O (2007) The metabolomics standards initiative. Nat Biotechnol 25:846–848PubMedCrossRefGoogle Scholar
  47. 47.
    Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TWM, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3:211–221CrossRefGoogle Scholar
  48. 48.
    Kind T, Fiehn O (2010) Advances in structure elucidation of small molecules using mass spectrometry. Bioanal Rev 2:23–60PubMedCrossRefGoogle Scholar
  49. 49.
    Stein SE (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom 10:770–781CrossRefGoogle Scholar
  50. 50.
    Stiernagle T (2006) Maintenance of C. elegans. WormBook: the online review of C. elegans biology, pp 1–11Google Scholar
  51. 51.
    Behrends V, Tredwell GD, Bundy JG (2011) A software complement to AMDIS for processing GC-MS metabolomic data. Anal Biochem 415:206–208PubMedCrossRefGoogle Scholar
  52. 52.
    Sangster T, Major H, Plumb R, Wilson AJ, Wilson ID (2006) A pragmatic and readily implemented quality control strategy for HPLC-MS and GC-MS-based metabonomic analysis. Analyst 131:1075–1078PubMedCrossRefGoogle Scholar
  53. 53.
    Dieterle F, Ross A, Schlotterbeck G, Senn H (2006) Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem 78:4281–4290PubMedCrossRefGoogle Scholar
  54. 54.
    Steuer R, Morgenthal K, Weckwerth W, Selbig J (2007) A gentle guide to the analysis of metabolomic data. Methods Mol Biol 358:105–126PubMedCrossRefGoogle Scholar
  55. 55.
    Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237PubMedCrossRefGoogle Scholar
  56. 56.
    Davies SK, Leroi AM, Bundy JG (2012) Fluorodeoxyuridine affects the identification of metabolic responses to daf-2 status in Caenorhabditis elegans. Mech Ageing Dev 133:46–49PubMedCrossRefGoogle Scholar
  57. 57.
    Casadevall i Solvas X, Geier FM, Leroi AM, Bundy JG, Edel JB, DeMello AJ (2011) High-throughput age synchronisation of Caenorhabditis elegans. Chem Commun (Camb) 47:9801–9803CrossRefGoogle Scholar
  58. 58.
    Ahringer J (ed) (2006) Reverse genetics, WormBook (ed) The C. elegans Research Community, WormBook, doi: 10.1895/wormbook.1.47.1, http://www.wormbook.org

Copyright information

© Springer Science+Busincess Media, LLC 2013

Authors and Affiliations

  • Florian M. Geier
    • 1
  • Silke Fuchs
    • 2
  • Gabriel Valbuena
    • 1
  • Armand M. Leroi
    • 3
  • Jacob G. Bundy
    • 1
  1. 1.Biomolecular Medicine, Department of Surgery and CancerImperial CollegeLondonUK
  2. 2.Cell and Molecular Biology, Department of Life SciencesImperial CollegeLondonUK
  3. 3.Ecology and Evolution, Department of Life SciencesImperial CollegeLondonUK

Personalised recommendations