Cell Senescence pp 185-196

Part of the Methods in Molecular Biology book series (MIMB, volume 965)

Detection of Senescence-Associated Heterochromatin Foci (SAHF)

Abstract

One of the most prominent features of cellular senescence, a stress response that prevents the propagation of cells that have accumulated potentially oncogenic alterations, is a permanent loss of proliferative potential. Thus, at odds with quiescent cells, which resume proliferation when stimulated to do so, senescent cells cannot proceed through the cell cycle even in the presence of mitogenic factors. Here, we describe a set of cytofluorometric techniques for studying how chemical and/or physical stimuli alter the cell cycle in vitro, in both qualitative and quantitative terms. Taken together, these methods allow for the identification of bona fide cytostatic effects as well as for a refined characterization of cell cycle distributions, providing information on proliferation, DNA content, as well as the presence of cell cycle phase-specific markers. At the end of the chapter, a set of guidelines is offered to assist researchers that approach the study of the cell cycle with the interpretation of results.

Key words

Cancer Cyclin B1 HCT 116 Histone H3 Mitosis 

References

  1. 1.
    Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24:2463–2479PubMedCrossRefGoogle Scholar
  2. 2.
    Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522PubMedCrossRefGoogle Scholar
  3. 3.
    Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740PubMedCrossRefGoogle Scholar
  4. 4.
    Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716PubMedCrossRefGoogle Scholar
  5. 5.
    Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA, Dynlacht BD (2002) E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev 16:245–256PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang R, Adams PD (2007) Heterochromatin and its relationship to cell senescence and cancer therapy. Cell Cycle 6:784–789PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang R, Liu ST, Chen W, Bonner M, Pehrson J, Yen TJ, Adams PD (2007) HP1 proteins are essential for a dynamic nuclear response that rescues the function of perturbed heterochromatin in primary human cells. Mol Cell Biol 27:949–962PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, Erzberger JP, Serebriiskii IG, Canutescu AA, Dunbrack RL, Pehrson JR, Berger JM, Kaufman PD, Adams PD (2005) Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8:19–30PubMedCrossRefGoogle Scholar
  9. 9.
    Kosar M, Bartkova J, Hubackova S, Hodny Z, Lukas J, Bartek J (2011) Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner and follow expression of p16(ink4a). Cell Cycle 10:457–468PubMedCrossRefGoogle Scholar
  10. 10.
    Adams PD (2007) Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. Gene 397:84–93PubMedCrossRefGoogle Scholar
  11. 11.
    Di Micco R, Sulli G, Dobreva M, Liontos M, Botrugno OA, Gargiulo G, dal Zuffo R, Matti V, d’Ario G, Montani E, Mercurio C, Hahn WC, Gorgoulis V, Minucci S, d’Adda di Fagagna F (2011) Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nat Cell Biol 13:292–302PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang R, Chen W, Adams PD (2007) Molecular dissection of formation of senescence-associated heterochromatin foci. Mol Cell Biol 27:2343–2358PubMedCrossRefGoogle Scholar
  13. 13.
    Funayama R, Saito M, Tanobe H, Ishikawa F (2006) Loss of linker histone H1 in cellular senescence. J Cell Biol 175:869–880PubMedCrossRefGoogle Scholar
  14. 14.
    Pagano M, Pepperkok R, Verde F, Ansorge W, Draetta G (1992) Cyclin A is required at two points in the human cell cycle. EMBO J 11:961–971PubMedGoogle Scholar
  15. 15.
    Narita M, Narita M, Krizhanovsky V, Nunez S, Chicas A, Hearn SA, Myers MP, Lowe SW (2006) A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell 126:503–514PubMedCrossRefGoogle Scholar
  16. 16.
    Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, Benguria A, Zaballos A, Flores JM, Barbacid M, Beach D, Serrano M (2005) Tumour biology: senescence in premalignant tumours. Nature 436:642PubMedCrossRefGoogle Scholar
  17. 17.
    Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311:1257PubMedCrossRefGoogle Scholar
  18. 18.
    Kreiling JA, Tamamori-Adachi M, Sexton AN, Jeyapalan JC, Munoz-Najar U, Peterson AL, Manivannan J, Rogers ES, Pchelintsev NA, Adams PD, Sedivy JM (2011) Age-associated increase in heterochromatic marks in murine and primate tissues. Aging Cell 10:292–304PubMedCrossRefGoogle Scholar
  19. 19.
    Collado M, Serrano M (2010) Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10:51–57PubMedCrossRefGoogle Scholar
  20. 20.
    Martin C, Chen S, Heilos D, Sauer G, Hunt J, Shaw AG, Sims PF, Jackson DA, Lovric J (2010) Changed genome heterochromatinization upon prolonged activation of the Raf/ERK signaling pathway. PLoS One 5:e13322PubMedCrossRefGoogle Scholar
  21. 21.
    Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi WJ, Peeper DS (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436:720–724PubMedCrossRefGoogle Scholar
  22. 22.
    Kennedy AL, Morton JP, Manoharan I, Nelson DM, Jamieson NB, Pawlikowski JS, McBryan T, Doyle B, McKay C, Oien KA, Enders GH, Zhang R, Sansom OJ, Adams PD (2011) Activation of the PIK3CA/AKT pathway suppresses senescence induced by an activated RAS oncogene to promote tumorigenesis. Mol Cell 42:36–49PubMedCrossRefGoogle Scholar
  23. 23.
    Tu Z, Aird KM, Bitler BG, Nicodemus JP, Beeharry N, Xia B, Yen TJ, Zhang R (2011) Oncogenic RAS regulates BRIP1 expression to induce dissociation of BRCA1 from chromatin, inhibit DNA repair, and promote senescence. Dev Cell 21:1077–1091PubMedCrossRefGoogle Scholar
  24. 24.
    Deng Q, Liao R, Wu BL, Sun P (2004) High intensity ras signaling induces premature senescence by activating p38 pathway in primary human fibroblasts. J Biol Chem 279:1050–1059PubMedCrossRefGoogle Scholar
  25. 25.
    Ye X, Zerlanko B, Zhang R, Somaiah N, Lipinski M, Salomoni P, Adams PD (2007) Definition of pRB- and p53-dependent and -independent steps in HIRA/ASF1a-mediated formation of senescence-associated heterochromatin foci. Mol Cell Biol 27:2452–2465PubMedCrossRefGoogle Scholar
  26. 26.
    Kennedy AL, McBryan T, Enders GH, Johnson FB, Zhang R, Adams PD (2010) Senescent mouse cells fail to overtly regulate the HIRA histone chaperone and do not form robust senescence associated heterochromatin foci. Cell Div 5:16PubMedCrossRefGoogle Scholar
  27. 27.
    Funayama R, Ishikawa F (2007) Cellular senescence and chromatin structure. Chromosoma 116:431–440PubMedCrossRefGoogle Scholar
  28. 28.
    Costanzi C, Pehrson JR (1998) Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393:599–601PubMedCrossRefGoogle Scholar
  29. 29.
    Trojer P, Reinberg D (2007) Facultative heterochromatin: is there a distinctive molecular signature? Mol Cell 28:1–13PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Busincess Media, LLC 2013

Authors and Affiliations

  1. 1.Women’s Cancer Program, Epigenetics and Progenitor Cells Keystone ProgramFox Chase Cancer CenterPhiladelphiaUSA

Personalised recommendations