Cell Senescence as Both a Dynamic and a Static Phenotype

  • Andrew R. J. Young
  • Masako Narita
  • Masashi Narita
Part of the Methods in Molecular Biology book series (MIMB, volume 965)


It has been 50 years since cellular senescence was first described in human diploid fibroblasts (HDFs), yet its mechanism as well as its physiological and clinical implications are still not fully appreciated. Recent progress suggests that cellular senescence is a collective phenotype, composed of complex networks of effector programs. The balance and quality within the effector network varies depending on the cell type, the nature of the stress as well as the context. Therefore, understanding each of these effectors in the context of the whole network will be necessary in order to fully understand senescence as a whole. Furthermore, searching for new effector programs of senescence will help to define this heterogeneous and complex phenotype according to cellular contexts.

Key words

Autophagy mTOR Oncogene SAHFs SASP Senescence SMS TASCC 



Our work is supported by Cancer Research UK.


  1. 1.
    Hayflick L (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621CrossRefPubMedGoogle Scholar
  2. 2.
    Shay JW, Wright WE (2000) Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol 1:72–76CrossRefPubMedGoogle Scholar
  3. 3.
    Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460CrossRefPubMedGoogle Scholar
  4. 4.
    Strasser A, Cory S, Adams JM (2011) Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J 30:3667–3683CrossRefPubMedGoogle Scholar
  5. 5.
    Narita M, Nũnez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, Erzberger JP, Serebriiskii IG, Canutescu AA, Dunbrack RL, Pehrson JR, Berger JM, Kaufman PD, Adams PD (2005) Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8:19–30CrossRefPubMedGoogle Scholar
  7. 7.
    Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre M, Giovanni Nuciforo P, Bensimon A, Maestro R, Giuseppe Pelicci P, D’adda Di Fagagna F (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444:638–642CrossRefPubMedGoogle Scholar
  8. 8.
    Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, Vassiliou L-VF, Kolettas E, Niforou K, Zoumpourlis VC, Takaoka M, Nakagawa H, Tort F, Fugger K, Johansson F, Sehested M, Andersen CL, Dyrskjot L, Ørntoft T, Lukas J, Kittas C, Helleday T, Halazonetis TD, Bartek J, Gorgoulis VG (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444:633–637CrossRefPubMedGoogle Scholar
  9. 9.
    Mallette FA, Gaumont-Leclerc M-F, Ferbeyre G (2007) The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes Dev 21:43–48CrossRefPubMedGoogle Scholar
  10. 10.
    Kuilman T, Michaloglou C, Vredeveld LCW, Douma S, van Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Peeper DS (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133:1019–1031CrossRefPubMedGoogle Scholar
  11. 11.
    Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, Fumagalli M, Da Costa M, Brown C, Popov N, Takatsu Y, Melamed J, D’adda Di Fagagna F, Bernard D, Hernando E, Gil J (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133:1006–1018CrossRefPubMedGoogle Scholar
  12. 12.
    Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR (2008) Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132:363–374CrossRefPubMedGoogle Scholar
  13. 13.
    Coppé J-P, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez P-Y, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868CrossRefPubMedGoogle Scholar
  14. 14.
    Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU, Behl C (2009) Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J 28:889–901CrossRefPubMedGoogle Scholar
  15. 15.
    Young ARJ, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot JFJ, Tavaré S, Arakawa S, Shimizu S, Watt FM, Narita M (2009) Autophagy mediates the mitotic senescence transition. Genes Dev 23:798–803CrossRefPubMedGoogle Scholar
  16. 16.
    Narita M, Young ARJ, Arakawa S, Samarajiwa SA, Nakashima T, Yoshida S, Hong S, Berry LS, Reichelt S, Ferreira M, Tavaré S, Inoki K, Shimizu S, Narita M (2011) Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 332(6032):966–970CrossRefPubMedGoogle Scholar
  17. 17.
    Romanov SR, Kozakiewicz BK, Holst CR, Stampfer MR, Haupt LM, Tlsty TD (2001) Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409:633–637CrossRefPubMedGoogle Scholar
  18. 18.
    Lin AW, Lowe SW (2001) Oncogenic ras activates the ARF-p53 pathway to suppress epithelial cell transformation. Proc Natl Acad Sci U S A 98:5025–5030CrossRefPubMedGoogle Scholar
  19. 19.
    Shay JW, Roninson IB (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23:2919–2933CrossRefPubMedGoogle Scholar
  20. 20.
    Narita M, Lowe SW (2005) Senescence comes of age. Nat Med 11:920–922CrossRefPubMedGoogle Scholar
  21. 21.
    Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602CrossRefPubMedGoogle Scholar
  22. 22.
    Lin AW, Barradas M, Stone JC, Van Aelst L, Serrano M, Lowe SW (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12:3008–3019CrossRefPubMedGoogle Scholar
  23. 23.
    Lazzerini Denchi E, Attwooll C, Pasini D, Helin K (2005) Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland. Mol Cell Biol 25:2660–2672CrossRefPubMedGoogle Scholar
  24. 24.
    Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, Dörken B, Jenuwein T, Schmitt CA (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:660–665CrossRefPubMedGoogle Scholar
  25. 25.
    Chen Z, Trotman LC, Shaffer D, Lin H-K, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, Cordon-Cardo C, Paolo Pandolfi P (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730CrossRefPubMedGoogle Scholar
  26. 26.
    Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, Benguría A, Zaballos A, Flores JM, Barbacid M, Beach D, Serrano M (2005) Tumour biology: senescence in premalignant tumours. Nature 436:642CrossRefPubMedGoogle Scholar
  27. 27.
    Michaloglou C, Vredeveld LCW, Soengas MS, Denoyelle C, Kuilman T, Van Der Horst CMAM, Majoor DM, Shay JW, Mooi WJ, Peeper DS (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436:720–724CrossRefPubMedGoogle Scholar
  28. 28.
    DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES, Scrimieri F, Winter JM, Hruban RH, Iacobuzio-Donahue C, Kern SE, Blair IA, Tuveson DA (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475:106–109CrossRefPubMedGoogle Scholar
  29. 29.
    Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM, Lowe SW (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109:335–346CrossRefPubMedGoogle Scholar
  30. 30.
    te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP (2002) DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62:1876–1883Google Scholar
  31. 31.
    Sharpless NE, Depinho RA (2007) How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8:703–713CrossRefPubMedGoogle Scholar
  32. 32.
    Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S (2009) Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460:1132–1135CrossRefPubMedGoogle Scholar
  33. 33.
    Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, Wahl GM, Belmonte JCI (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460:1140–1144CrossRefPubMedGoogle Scholar
  34. 34.
    Marión RM, Strati K, Li H, Murga M, Blanco R, Ortega S, Fernandez-Capetillo O, Serrano M, Blasco MA (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460:1149–1153CrossRefPubMedGoogle Scholar
  35. 35.
    Li H, Collado M, Villasante A, Strati K, Ortega S, Cañamero M, Blasco MA, Serrano M (2009) The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460:1136–1139CrossRefPubMedGoogle Scholar
  36. 36.
    Krizhanovsky V, Lowe SW (2009) Stem cells: the promises and perils of p53. Nature 460:1085–1086CrossRefPubMedGoogle Scholar
  37. 37.
    Banito A, Rashid ST, Acosta JC, Li S, Pereira CF, Geti I, Pinho S, Silva JC, Azuara V, Walsh M, Vallier L, Gil J (2009) Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev 23:2134–2139CrossRefPubMedGoogle Scholar
  38. 38.
    Seshadri T, Campisi J (1989) Growth-factor-inducible gene expression in senescent human fibroblasts. Exp Gerontol 24:515–522CrossRefPubMedGoogle Scholar
  39. 39.
    Seshadri T, Campisi J (1990) Repression of c-fos transcription and an altered genetic program in senescent human fibroblasts. Science 247:205–209CrossRefPubMedGoogle Scholar
  40. 40.
    Beauséjour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, Campisi J (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22:4212–4222CrossRefPubMedGoogle Scholar
  41. 41.
    D’adda Di Fagagna F (2008) Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8:512–522CrossRefPubMedGoogle Scholar
  42. 42.
    Narita M (2007) Cellular senescence and chromatin organisation. Br J Cancer 96:686–691CrossRefPubMedGoogle Scholar
  43. 43.
    Adams PD (2007) Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. Gene 397:84–93CrossRefPubMedGoogle Scholar
  44. 44.
    Narita M, Narita M, Krizhanovsky V, Nuñez S, Chicas A, Hearn SA, Myers MP, Lowe SW (2006) A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell 126:503–514CrossRefPubMedGoogle Scholar
  45. 45.
    Shelton DN, Chang E, Whittier PS, Choi D, Funk WD (1999) Microarray analysis of replicative senescence. Curr Biol 9:939–945CrossRefPubMedGoogle Scholar
  46. 46.
    Young ARJ, Narita M (2009) SASP reflects senescence. EMBO Rep 10:228–230CrossRefPubMedGoogle Scholar
  47. 47.
    Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A 98:12072–12077CrossRefPubMedGoogle Scholar
  48. 48.
    Campisi J, D’adda Di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740CrossRefPubMedGoogle Scholar
  49. 49.
    Rodier F, Coppé J-P, Patil CK, Hoeijmakers WAM, Muñoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nature 11:973–979Google Scholar
  50. 50.
    Kraft C, Peter M, Hofmann K (2010) Selective autophagy: ubiquitin-mediated recognition and beyond. Nature 12:836–841Google Scholar
  51. 51.
    Holtzman E (1989) Lysosomes. Springer, New York, p 439Google Scholar
  52. 52.
    Mancini GM, Havelaar AC, Verheijen FW (2000) Lysosomal transport disorders. J Inherit Metab Dis 23:278–292CrossRefPubMedGoogle Scholar
  53. 53.
    Ryan KM (2011) p53 and autophagy in cancer: guardian of the genome meets guardian of the proteome. Eur J Cancer 47:44–50CrossRefPubMedGoogle Scholar
  54. 54.
    Denoyelle C, Abou-Rjaily G, Bezrookove V, Verhaegen M, Johnson TM, Fullen DR, Pointer JN, Gruber SB, Su LD, Nikiforov MA, Kaufman RJ, Bastian BC, Soengas MS (2006) Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat Cell Biol 8:1053–1063CrossRefPubMedGoogle Scholar
  55. 55.
    Luo Y, Zou P, Zou J, Wang J, Zhou D, Liu L (2011) Autophagy regulates ROS-induced cellular senescence via p21 in a p38 MAPKα dependent manner. Exp Gerontol 46:860–867CrossRefPubMedGoogle Scholar
  56. 56.
    Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y (2010) Autophagy mediates the process of cellular senescence characterizing bile duct damages in primary biliary cirrhosis. Lab Invest 90:835–843CrossRefPubMedGoogle Scholar
  57. 57.
    Sasaki M, Ikeda H, Haga H, Manabe T, Nakanuma Y (2005) Frequent cellular senescence in small bile ducts in primary biliary cirrhosis: a possible role in bile duct loss. J Pathol 205:451–459CrossRefPubMedGoogle Scholar
  58. 58.
    Gamerdinger M, Kaya AM, Wolfrum U, Clement AM, Behl C (2011) BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins. EMBO Rep 12:149–156CrossRefPubMedGoogle Scholar
  59. 59.
    Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484CrossRefPubMedGoogle Scholar
  60. 60.
    Sengupta S, Peterson TR, Sabatini DM (2010) Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40:310–322CrossRefPubMedGoogle Scholar
  61. 61.
    Korotchkina LG, Leontieva OV, Bukreeva EI, Demidenko ZN, Gudkov AV, Blagosklonny MV (2010) The choice between p53-induced senescence and quiescence is determined in part by the mTOR pathway. Aging (Albany NY) 2:344–352Google Scholar
  62. 62.
    Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–1501CrossRefPubMedGoogle Scholar
  63. 63.
    Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290–303CrossRefPubMedGoogle Scholar
  64. 64.
    Dieterich DC, Link AJ, Graumann J, Tirrell DA, Schuman EM (2006) Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc Natl Acad Sci U S A 103:9482–9487CrossRefPubMedGoogle Scholar
  65. 65.
    Dieterich DC, Lee JJ, Link AJ, Graumann J, Tirrell DA, Schuman EM (2007) Labeling, detection and identification of newly synthesized proteomes with bioorthogonal non-canonical amino-acid tagging. Nat Protoc 2:532–540CrossRefPubMedGoogle Scholar
  66. 66.
    Dieterich DC, Hodas JJL, Gouzer G, Shadrin IY, Ngo JT, Triller A, Tirrell DA, Schuman EM (2010) In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat Neurosci 13:897–905CrossRefPubMedGoogle Scholar
  67. 67.
    Hartleben B, Gödel M, Meyer-Schwesinger C, Liu S, Ulrich T, Köbler S, Wiech T, Grahammer F, Arnold SJ, Lindenmeyer MT, Cohen CD, Pavenstädt H, Kerjaschki D, Mizushima N, Shaw AS, Walz G, Huber TB (2010) Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest 120:1084–1096CrossRefPubMedGoogle Scholar
  68. 68.
    Pavenstädt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83:253–307PubMedGoogle Scholar

Copyright information

© Springer Science+Busincess Media, LLC 2013

Authors and Affiliations

  • Andrew R. J. Young
    • 1
  • Masako Narita
    • 1
  • Masashi Narita
    • 1
  1. 1.Cancer Research UK, Cambridge Research InstituteCambridgeUK

Personalised recommendations