Skip to main content

Building Simulation Models of Developing Plant Organs Using VirtualLeaf

Part of the Methods in Molecular Biology book series (MIMB,volume 959)

Abstract

Cell-based computational modeling and simulation are becoming invaluable tools in analyzing plant ­development. In a cell-based simulation model, the inputs are behaviors and dynamics of individual cells and the rules describe responses to signals from adjacent cells. The outputs are the growing tissues, shapes and cell-differentiation patterns that emerge from the local, chemical and biomechanical cell-cell interactions. Here, we present a step-by-step, practical tutorial for building cell-based simulations of plant development with VirtualLeaf, a freely available, open-source software framework for modeling plant development. We show how to build a model of a growing tissue, a reaction-diffusion system on a growing domain, and an auxin transport model. The aim of VirtualLeaf is to make computational modeling better accessible to experimental plant biologists with relatively little computational background.

Key words

  • Plant development
  • Organ growth
  • Cell division
  • Cell growth
  • Mathematical modeling
  • Cell-based modeling
  • Systems biology
  • Computational modeling
  • Reaction-diffusion
  • Biomechanics
  • Auxin

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-62703-221-6_23
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-62703-221-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dupuy L, Mackenzie J, Rudge T, Haseloff J (2008) A system for modelling cell–cell interactions during plant morphogenesis. Ann Bot-London 101:1255–1265

    CrossRef  Google Scholar 

  2. Grieneisen VA, Scheres B (2009) Back to the future: evolution of computational models in plant morphogenesis. Curr Opin Plant Biol 12:606–614

    PubMed  CrossRef  CAS  Google Scholar 

  3. Chickarmane V, Roeder AH, Tarr PT et al (2010) Computational morphodynamics: a modeling framework to understand plant growth. Annu Rev Plant Biol 61:65–87

    PubMed  CrossRef  CAS  Google Scholar 

  4. Santos F, Teale W, Fleck C et al (2010) Modelling polar auxin transport in developmental patterning. Plant Biol 12(Suppl 1):3–14

    PubMed  CrossRef  CAS  Google Scholar 

  5. Keurentjes JJ, Angenent GC, Dicke M et al (2011) Redefining plant systems biology: from cell to ecosystem. Trends Plant Sci 16:183–190

    PubMed  CrossRef  CAS  Google Scholar 

  6. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    PubMed  CrossRef  CAS  Google Scholar 

  7. Merks RMH, Guravage M, Inzé D, Beemster GTS (2011) VirtualLeaf: An open-source framework for cell-based modeling of plant tissue growth and development. Plant Physiol 155:656–666

    PubMed  CrossRef  CAS  Google Scholar 

  8. Merks RMH, Glazier JA (2005) A cell-centered approach to developmental biology. Physica A 352:113–130

    CrossRef  CAS  Google Scholar 

  9. Anderson ARA, Chaplain MAJ, Rejniak KA (eds.) (2007) Single-cell-based models in biology and medicine. Birkhaüser, Basel

    Google Scholar 

  10. Meinhardt H (1976) Morphogenesis of lines and nets. Differentiation 6:117–123

    PubMed  CrossRef  CAS  Google Scholar 

  11. Benítez M, Espinosa-Soto C, Padilla-Longoria P, Díaz J, Alvarez-Buylla ER (2007) Equivalent genetic regulatory networks in different contexts recover contrasting spatial cell patterns that resemble those in Arabidopsis root and leaf epidermis: a dynamic model. Int J Dev Biol 51:139–155

    PubMed  CrossRef  Google Scholar 

  12. Bouyer D, Geier F, Kragler F, Schnittger A, Pesch M, Wester K, Balkunde R, Timmer J, Fleck C, Hülskamp M (2008) Two-dimensional patterning by a trapping/depletion mechanism: the role of TTG1 and GL3 in Arabidopsis trichome formation. PLoS Biol 6:1166–1177

    CrossRef  CAS  Google Scholar 

  13. Merks RMH, Van de Peer Y, Inzé D, Beemster GTS (2007) Canalization without flux sensors: a traveling-wave hypothesis. Trends Plant Sci 12:384–390

    PubMed  CrossRef  CAS  Google Scholar 

  14. Jönsson H, Heisler MG, Shapiro BE, Meyerowitz EM, Mjolsness E (2006) An auxin-driven polarized transport model for phyllotaxis. P Natl Acad Sci USA 103: 1633–1638

    CrossRef  Google Scholar 

  15. Smith RS, Guyomarc’h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P (2006) A plausible model of phyllotaxis. P Natl Acad Sci USA 103:1301–1306

    CrossRef  CAS  Google Scholar 

  16. Ellner SP, Guckenheimer J (2006) Dynamic models in biology. Princeton University Press, Princeton

    Google Scholar 

  17. Fall CP, Wagner JM, Marland ES, Tyson JJ (eds) (2002) Computational cell biology. Series interdisciplinary applied mathematics, vol 20. Springer, New York

    Google Scholar 

Download references

Acknowledgments

This work was financed by the Netherlands Consortium for Systems Biology (NCSB), which is part of the Netherlands Genomics Initiative/Netherlands Organisation for Scientific Research, and by Marie Curie European Reintegration Grant PERG03-GA-2008-230974 to RM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roeland M. H. Merks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Merks, R.M.H., Guravage, M.A. (2013). Building Simulation Models of Developing Plant Organs Using VirtualLeaf . In: De Smet, I. (eds) Plant Organogenesis. Methods in Molecular Biology, vol 959. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-221-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-221-6_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-220-9

  • Online ISBN: 978-1-62703-221-6

  • eBook Packages: Springer Protocols