Isolation and Analysis of mRNAs from Specific Cell Types of Plants by Ribosome Immunopurification

  • Angelika MustrophEmail author
  • M. Eugenia Zanetti
  • Thomas Girke
  • Julia Bailey-Serres
Part of the Methods in Molecular Biology book series (MIMB, volume 959)


Multiple ribosomes assemble onto an individual mRNA to form a polyribosome (polysome) complex. The epitope tagging of specific ribosomal proteins can enable the immunopurification of polysomes from crude cell extracts derived from cryopreserved tissue samples. Through expression of the epitope-tagged ribosomal protein in cell-type and regional specific domains of Arabidopsis thaliana and other organisms it is feasible to quantitatively assess the mRNAs that are associated with ribosomes with cell-specific resolution. Here we present detailed methods for development of transgenics that express a FLAG-tagged version of ribosomal protein L18 (RPL18) under the direction of individual promoters with specific domains of expression, the immunopurification of ribosomes, and bioinformatic analyses of the resultant datasets obtained by microarray profiling. This methodology provides researchers with the opportunity to assess rapid changes at the organ, tissue, regional or cell-type specific level of mRNAs that are associated with ribosomes and therefore engaged in translation.

Key words

Ribosome immunopurification Polysomes Translatome Cell-specific gene expression Microarray Differential expression analysis 



We thank all of the individuals who have contributed to the development of polysome isolation and analyses methods in our group over the years. This work was supported by the U.S. National Science Foundation (DBI 0211857, IBN-0420152, and IOS-0750811 to J. B.-S. and 2010-0820842 and ABI-0957099 to T. G.).


  1. 1.
    Brady SM, Orlando DA, Lee JY et al (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806PubMedCrossRefGoogle Scholar
  2. 2.
    Benfey PN, Scheres B (2000) Root development. Curr Biol 10:R813–R815PubMedCrossRefGoogle Scholar
  3. 3.
    Van Norman JM, Breakfield NW, Benfey PN (2011) Intercellular communication during plant development. Plant Cell 23:855–864PubMedCrossRefGoogle Scholar
  4. 4.
    Iyer-Pascuzzi AS, Benfey PN (2009) Transcriptional networks in root cell fate specification. Biochim Biophys Acta 1789: 315–325PubMedCrossRefGoogle Scholar
  5. 5.
    Nakajima K, Benfey PN (2002) Signaling in and out: control of cell division and differentiation in the shoot and root. Plant Cell 14(Suppl):S265–S276PubMedGoogle Scholar
  6. 6.
    Petricka JJ, Benfey PN (2008) Root layers: complex regulation of developmental patterning. Curr Opin Genet Dev 18:354–361PubMedCrossRefGoogle Scholar
  7. 7.
    Ishida T, Kurata T, Okada K et al (2008) A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol 59:365–386PubMedCrossRefGoogle Scholar
  8. 8.
    Schiefelbein J, Kwak SH, Wieckowski Y et al (2009) The gene regulatory network for root epidermal cell-type pattern formation in Arabidopsis. J Exp Bot 60:1515–1521PubMedCrossRefGoogle Scholar
  9. 9.
    Spencer MW, Casson SA, Lindsey K (2007) Transcriptional profiling of the Arabidopsis embryo. Plant Physiol 143:924–940PubMedCrossRefGoogle Scholar
  10. 10.
    Jiao Y, Tausta SL, Gandotra N et al (2009) A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat Genet 41:258–263PubMedCrossRefGoogle Scholar
  11. 11.
    Klink VP, Hosseini P, Matsye P et al (2009) A gene expression analysis of syncytia laser microdissected from the roots of the Glycine max (soybean) genotype PI 548402 (Peking) undergoing a resistant reaction after infection by Heterodera glycines (soybean cyst nematode). Plant Mol Biol 71:525–567PubMedCrossRefGoogle Scholar
  12. 12.
    Matas AJ, Agustí J, Tadeo FR et al (2010) Tissue-specific transcriptome profiling of the citrus fruit epidermis and subepidermis using laser capture microdissection. J Exp Bot 61:3321–3330PubMedCrossRefGoogle Scholar
  13. 13.
    Birnbaum K, Shasha DE, Wang JY et al (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960PubMedCrossRefGoogle Scholar
  14. 14.
    Dinneny JR, Long TA, Wang JY et al (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320:942–945PubMedCrossRefGoogle Scholar
  15. 15.
    Gifford ML, Dean A, Gutierrez RA et al (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci USA 105:803–808PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang C, Barthelson RA, Lambert GM et al (2008) Global characterization of cell-specific gene expression through fluorescence-activated sorting of nuclei. Plant Physiol 147:30–40PubMedCrossRefGoogle Scholar
  17. 17.
    Galbraith DW, Janda J, Lambert GM (2011) Multiparametric analysis, sorting, and transcriptional profiling of plant protoplasts and nuclei according to cell type. Methods Mol Biol 699:407–429PubMedCrossRefGoogle Scholar
  18. 18.
    Mustroph A, Zanetti ME, Jang CJ et al (2009) Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proc Natl Acad Sci USA 106:18843–18848PubMedCrossRefGoogle Scholar
  19. 19.
    Jiao Y, Meyerowitz EM (2010) Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control. Mol Syst Biol 6:419PubMedCrossRefGoogle Scholar
  20. 20.
    Deal RB, Henikoff S (2010) A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev Cell 18:1030–1040PubMedCrossRefGoogle Scholar
  21. 21.
    Nawy T, Lee JY, Colinas J et al (2005) Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell 17:1908–1925PubMedCrossRefGoogle Scholar
  22. 22.
    Yadav RK, Girke T, Pasala S et al (2009) Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci USA 106:4941–4946PubMedCrossRefGoogle Scholar
  23. 23.
    Jain R, Devine T, George AD et al (2011) RIP-Chip analysis: RNA-binding protein immunoprecipitation-microarray (chip) profiling. Methods Mol Biol 703:247–263PubMedCrossRefGoogle Scholar
  24. 24.
    Zanetti ME, Chang IF, Gong F et al (2005) Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression. Plant Physiol 138:624–635PubMedCrossRefGoogle Scholar
  25. 25.
    Kawaguchi R, Girke T, Bray EA et al (2004) Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana. Plant J 38:823–839PubMedCrossRefGoogle Scholar
  26. 26.
    Kawaguchi R, Bailey-Serres J (2005) mRNA sequence features that contribute to translational regulation in Arabidopsis. Nucleic Acids Res 33:955–965PubMedCrossRefGoogle Scholar
  27. 27.
    Branco-Price C, Kawaguchi R, Ferreira RB et al (2005) Genome-wide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation. Ann Bot 96:647–660PubMedCrossRefGoogle Scholar
  28. 28.
    de Jong M, van Breukelen B, Wittink FR et al (2006) Membrane-associated transcripts in Arabidopsis; their isolation and characterization by DNA microarray analysis and bioinformatics. Plant J 46:708–721PubMedCrossRefGoogle Scholar
  29. 29.
    Nicolaï M, Roncato MA, Canoy AS et al (2006) Large-scale analysis of mRNA translation states during sucrose starvation in Arabidopsis cells identifies cell proliferation and chromatin structure as targets of translational control. Plant Physiol 141:663–673PubMedCrossRefGoogle Scholar
  30. 30.
    Branco-Price C, Kaiser KA, Jang CJ et al (2008) Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana. Plant J 56:743–755PubMedCrossRefGoogle Scholar
  31. 31.
    Piques M, Schulze WX, Höhne M et al (2009) Ribosome and transcript copy numbers, polysome occupancy and enzyme dynamics in Arabidopsis. Mol Syst Biol 5:314PubMedCrossRefGoogle Scholar
  32. 32.
    Bailey-Serres J (1999) Selective translation of cytoplasmic mRNAs in plants. Trends Plant Sci 4:142–148PubMedCrossRefGoogle Scholar
  33. 33.
    Kawaguchi R, Bailey-Serres J (2002) Regulation of translational initiation in plants. Curr Opin Plant Biol 5:460–465PubMedCrossRefGoogle Scholar
  34. 34.
    Bailey-Serres J, Sorenson R, Juntawong P (2009) Getting the message across: cytoplasmic ribonucleoprotein complexes. Trends Plant Sci 14:443–453PubMedCrossRefGoogle Scholar
  35. 35.
    Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M et al (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190PubMedCrossRefGoogle Scholar
  36. 36.
    Masucci JD, Rerie WG, Foreman DR et al (1996) The homeobox gene GLABRA2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana. Development 122:1253–1260PubMedGoogle Scholar
  37. 37.
    Heidstra R, Welch D, Scheres B (2004) Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes Dev 18:1964–1969PubMedCrossRefGoogle Scholar
  38. 38.
    Mace DL, Lee J-Y, Twigg RW et al (2006) Quantification of transcription factor expression from Arabidopsis images. Bioinformatics 22:e323–e331PubMedCrossRefGoogle Scholar
  39. 39.
    Wysocka-Diller JW, Helariutta Y, Fukaki H et al (2000) Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127:595–603PubMedGoogle Scholar
  40. 40.
    Helariutta Y, Fukaki H, Wysocka-Diller J et al (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–567PubMedCrossRefGoogle Scholar
  41. 41.
    Estelle M (2001) Cytokinin receptor: just another histidine kinase. Curr Biol 11:271–273CrossRefGoogle Scholar
  42. 42.
    Imlau A, Truernit E, Sauer N (1999) Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. Plant Cell 11:309–322PubMedGoogle Scholar
  43. 43.
    Takahashi H, Watanabe-Takahashi A, Smith FW et al (2000) The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23:171–182PubMedCrossRefGoogle Scholar
  44. 44.
    Williams ME, Sussex IM (1995) Developmental regulation of ribosomal protein L16 genes in Arabidopsis thaliana. Plant J 8:65–76PubMedCrossRefGoogle Scholar
  45. 45.
    Szymanski DB, Jilk RA, Pollock SM, Marks MD (1998) Control of GL2 expression in Arabidopsis leaves and trichomes. Development 125:1161–1171PubMedGoogle Scholar
  46. 46.
    Pighin JA, Zheng H, Balakshin LJ et al (2004) Plant cuticular lipid export requires an ABC transporter. Science 306:702–704PubMedCrossRefGoogle Scholar
  47. 47.
    Nakamura RL, McKendree WL Jr, Hirsch RE et al (1995) Expression of an Arabidopsis potassium channel gene in guard cells. Plant Physiol 109:371–374PubMedCrossRefGoogle Scholar
  48. 48.
    Donald RG, Cashmore AR (1990) Mutation of either G box or I box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter. EMBO J 9:1717–1726PubMedGoogle Scholar
  49. 49.
    Twell D, Yamaguchi J, McCormick S (1990) Pollen-specific gene expression in transgenic plants: coordinate regulation of two different tomato gene promoters during microsporogenesis. Development 109:705–713PubMedGoogle Scholar
  50. 50.
    Haseloff J (1999) GFP variants for multispectral imaging of living cells. Methods Cell Biol 58:139–151PubMedCrossRefGoogle Scholar
  51. 51.
    Kiegle E, Moore CA, Haseloff J et al (2000) Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J 23:267–278PubMedCrossRefGoogle Scholar
  52. 52.
    Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10:1788–1795PubMedCrossRefGoogle Scholar
  53. 53.
    McIntosh KB, Bonham-Smith PC (2005) The two ribosomal protein L23A genes are differentially transcribed in Arabidopsis thaliana. Genome 48:443–454PubMedCrossRefGoogle Scholar
  54. 54.
    Mustroph A, Juntawong P, Bailey-Serres J (2009) Isolation of plant polysomal mRNA by differential centrifugation and ribosome immunopurification methods. Methods Mol Biol 553:109–126PubMedCrossRefGoogle Scholar
  55. 55.
    Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedCrossRefGoogle Scholar
  56. 56.
    Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80PubMedCrossRefGoogle Scholar
  57. 57.
    Horan K, Jang C, Bailey-Serres J et al (2008) Annotating genes of known and unknown function by large-scale coexpression analysis. Plant Physiol 147:41–57PubMedCrossRefGoogle Scholar
  58. 58.
    Kauffmann A, Gentleman R, Huber W (2009) arrayQualityMetrics – a bioconductor package for quality assessment of microarray data. Bioinformatics 25:415–416PubMedCrossRefGoogle Scholar
  59. 59.
    Irizarry RA, Hobbs B, Collin F et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264PubMedCrossRefGoogle Scholar
  60. 60.
    Millenaar FF, Okyere J, May ST et al (2006) How to decide? Different methods of calculating gene expression from short oligonucleotide array data will give different results. BMC Bioinformatics 7:137PubMedCrossRefGoogle Scholar
  61. 61.
    Binder H, Preibisch S, Berger H (2010) Calibration of microarray gene-expression data. Methods Mol Biol 576:375–407PubMedCrossRefGoogle Scholar
  62. 62.
    Liu WM, Mei R, Di X et al (2002) Analysis of high density expression microarrays with signedrank call algorithms. Bioinformatics 18:1593–1599PubMedCrossRefGoogle Scholar
  63. 63.
    Gautier L, Cope L, Bolstad BM et al (2004) Affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307–315PubMedCrossRefGoogle Scholar
  64. 64.
    Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3Google Scholar
  65. 65.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  66. 66.
    Saeed AI, Bhagabati NK, Braisted JC et al (2006) TM4 microarray software suite. Methods Enzymol 411:134–193PubMedCrossRefGoogle Scholar
  67. 67.
    Orlando DA, Brady SM, Koch JD et al (2010) Manipulating large-scale Arabidopsis microarray expression data: identifying dominant expression patterns and biological process enrichment. Methods Mol Biol 553:57–77CrossRefGoogle Scholar
  68. 68.
    Falcon S, Gentleman R (2007) Using GOstats to test gene lists for GO term association. Bioinformatics 23:257–258PubMedCrossRefGoogle Scholar
  69. 69.
    Thimm O, Blaesing O, Gibon Y et al (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Angelika Mustroph
    • 1
    Email author
  • M. Eugenia Zanetti
    • 2
    • 3
    • 4
  • Thomas Girke
    • 5
  • Julia Bailey-Serres
    • 3
    • 2
  1. 1.Department of Plant PhysiologyUniversity of BayreuthBayreuthGermany
  2. 2.Department of Botany and Plant SciencesUniversity of CaliforniaRiversideUSA
  3. 3.Center for Plant Cell BiologyUniversity of CaliforniaRiversideUSA
  4. 4.Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología MolecularUniversidad Nacional de La PlataLa PlataArgentina
  5. 5.Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB)University of CaliforniaRiversideUSA

Personalised recommendations