Advertisement

The Purification of Large Numbers of Antigen Presenting Dendritic Cells from Mouse Spleen

  • David Vremec
  • Elodie Segura
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 960)

Abstract

Dendritic cells (DC) are found at low frequency in lymphoid and non-lymphoid tissues. Different DC subsets are adept at different roles in immunity in diverse scenarios of attack by infectious agents, as well as in the maintenance of self-tolerance. A key element in the ability of DC to initiate adaptive immune responses is their capacity to capture and process antigen, whether from pathogens, vaccines or self-components, and present it to T cells. Our typical procedure for isolation of the different DC types from murine spleen involves their digestion from the tissue using collagenase, selection of cells of light density, and negative selection for DC. DC may then be separated into their functionally distinct subpopulations using immunofluorescent labeling and flow cytometric cell sorting. If the availability of mice is limiting, our protocol can cater for DC numbers boosted by the administration of fms-like tyrosine kinase 3 ligand (Flt3L), directly via subcutaneous injection or via the introduction of a Flt3L secreting melanoma cell line. Large numbers of in vitro equivalents of the spleen DC subsets may also be produced by culturing bone marrow with Flt3L. If flow cytometric sorting time is a limitation splenic DC subpopulations may instead be separated using a combination of fluorescent antibody labeling and anti-fluorochrome magnetic beads. Careful segregation of these functionally distinct subpopulations of DC will enable a thorough examination of their antigen processing and presenting capabilities.

Key words

Dendritic cell DC isolation DC expansion DC subpopulations Conventional DCs Plasmacytoid DCs 

Notes

Acknowledgments

This work was made possible through Victorian State Government Operational Infrastructure Support and Australian Government NHMRC IRIIS.

References

  1. 1.
    Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296CrossRefPubMedGoogle Scholar
  2. 2.
    Jung S, Unutmaz D, Wong P, Sano G, De Los Santos K, Sparwasser T, Wu S, Vuthoori S, Ko K, Zavala F, Pamer EG, Littman DR, Lang RA (2002) In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17:211–220CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Liu CH, Fan YT, Dias A, Esper L, Corn RA, Bafica A, Machado FS, Aliberti J (2006) Cutting Edge: Dendritic cells are essential for in vivo IL-12 production and development of resistance against Toxoplasma gondii infection in mice. J Immunol 177:31–35CrossRefPubMedGoogle Scholar
  4. 4.
    Ciavarra RP, Stephens A, Nagy S, Sekellick M, Steel C (2006) Evolution of immunological paradigms in a virus model: are dendritic cells critical for antiviral immunity and viral clearance? J Immunol 177:492–500CrossRefPubMedGoogle Scholar
  5. 5.
    Watanabe N, Wang YH, Lee HK, Ito T, Cao W, Liu YJ (2005) Hassall’s corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 436:1181–1185CrossRefPubMedGoogle Scholar
  6. 6.
    Luo X, Tarbell KV, Yang H, Pothoven K, Bailey SL, Dind R, Steinman RM, Suthanthiran M (2007) Dendritic cells with TGF-β1 differentiate naïve CD4+CD25 T cells into islet-protective Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A 104:2821–2826CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yamazaki S, Iyoda T, Tarbell K, Olson K, Velinzon K, Inaba K, Steinman RM (2003) Direct expansion of functional CD25+CD4+ regulatory T cells by antigen presenting dendritic cells. J Exp Med 198:235–247CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wilson NS, El-Sukkari D, Belz GT, Smith CM, Steptoe RJ, Heath WR, Shortman K, Villadangos JA (2003) Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood 102:2187–2194CrossRefPubMedGoogle Scholar
  9. 9.
    Villadangos JA, Schnorrer P (2007) Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol 7:543–555CrossRefPubMedGoogle Scholar
  10. 10.
    Heath WR, Kurts C, Miller JF, Carbone FR (1998) Cross-tolerance: a pathway for inducing tolerance to peripheral tissue antigens. J Exp Med 187:1549–1553CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Heath WR (2004) Cross presentation, dendritic cell subsets, and generation of immunity to cellular antigens. Immunol Rev 199:9–26CrossRefPubMedGoogle Scholar
  12. 12.
    Vremec D, Shortman K (1997) Dendritic cell subtypes in mouse lymphoid organs: cross-correlation of surface markers, changes on incubation and differences between thymus, spleen and lymph nodes. J Immunol 159:565–573PubMedGoogle Scholar
  13. 13.
    Vremec D, O’Keeffe M, Wilson A, Ferrero I, Koch U, Radtke F, Scott B, Hertzog P, Villadangos J, And Shortman K (2011) Factors determining the spontaneous activation of splenic dendritic cells in culture. Innate Immun 17:338–352CrossRefPubMedGoogle Scholar
  14. 14.
    Shortman K, Caux C (1997) Dendritic cell development: multiple pathways to natures adjuvant. Stem Cells 15:409–419CrossRefPubMedGoogle Scholar
  15. 15.
    Shortman K, Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2:151–161CrossRefPubMedGoogle Scholar
  16. 16.
    Vremec D, Pooley J, Hochrein H, Wu L, Shortman K (2000) CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J Immunol 164:2978–2986CrossRefPubMedGoogle Scholar
  17. 17.
    Vremec D (2010) The isolation of mouse dendritic cells from lymphoid tissues and the identification of dendritic cell subtypes by multiparameter flow cytometry. In: Naik SH (ed) Dendritic cell protocols, vol 595, Methods in molecular biology. Humana, Totowa, NJ, pp 205–229CrossRefGoogle Scholar
  18. 18.
    O’Keeffe M, Hochrein H, Vremec D, Caminschi I, Miller JL, Anders EM, Wu L, Lahoud MH, Henri S, Scott B, Hertzog P, Tatarczuch L, Shortman K (2002) Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8+ dendritic cells only after microbial stimulus. J Exp Med 196:1307–1319CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Asselin-Paturel C, Brizard G, Pin J-J, Briere F, Trinchieri G (2003) Mouse strain differences in plasmacytoid dendritic cell frequency and function revealed by a novel monoclonal antibody. J Immunol 171:6466–6477CrossRefPubMedGoogle Scholar
  20. 20.
    Naik SH, Shortman K (2007) Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7:19–30CrossRefPubMedGoogle Scholar
  21. 21.
    Hochrein H, Shortman K, Vremec D, Scott B, Hertzog P, O’Keeffe M (2001) Differential production of IL-12, IFN-α and IFN-γ by mouse dendritic cell subsets. J Immunol 166:5448–5455CrossRefPubMedGoogle Scholar
  22. 22.
    Den Haan JM, Lehar SM, Bevan MJ (2000) CD8+ but not CD8 dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 192:1685–1696CrossRefGoogle Scholar
  23. 23.
    Pooley JL, Heath WR, Shortman K (2001) Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8 dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J Immunol 166:5327–5330CrossRefPubMedGoogle Scholar
  24. 24.
    Proietto AI, O’Keeffe M, Gartlan K, Wright MD, Shortman K, Wu L, Lahoud MH (2004) Differential production of inflammatory chemokines by murine dendritic cell subsets. Immunobiology 209:163–172CrossRefPubMedGoogle Scholar
  25. 25.
    Naik SH, Proietto AI, Wilson NS, Dakic A, Schnorrer P, Fuchsberger M, Lahoud MH, O’Keeffe M, Shao QX, Chen WF, Villadangos JA, Shortman K, Wu L (2005) Cutting edge: generation of splenic CD8+ and CD8 dendritic cell equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures. J Immunol 174:6592–6597CrossRefPubMedGoogle Scholar
  26. 26.
    Caminschi I, Proietto AI, Ahmet F, Kitsoulis S, Teh JS, Lo JCY, Rizzitelli A, Wu L, Vremec D, van Dommelen SLH, Campbell IK, Maraskovsky E, Braley B, Davey GM, Mottram P, van de Velde N, Jensen K, Lew AM, Wright MD, Heath WR, Shortma K, Lahoud MH (2008) The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 112:3264–3273CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    D’Amico A, Wu L (2003) The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J Exp Med 198:293–303CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD, Shortman K, McKenna HJ (1996) Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med 184:1953–1962CrossRefPubMedGoogle Scholar
  29. 29.
    Mach N, Gillessen B, Wilson SB, Sheehan C, Mihm M, Dranoff G (2000) Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand. Cancer Res 60:3239–3246PubMedGoogle Scholar
  30. 30.
    Brasel K, De Smedt T, Smith JL, Maliszewski CR (2000) Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures. Blood 96:3029–3039PubMedGoogle Scholar
  31. 31.
    Gilliet M, Boonstra A, Paturel C, Antonenko S, Xu XL, Trinchieri G, O’Garra A, Liu YJ (2002) The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT-3-ligand and granulocyte/macrophage colony-stimulating factor. J Exp Med 195:953–958CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sathe P, Pooley J, Vremec D, Mintern J, Jin JO, Wu L, Kwak JY, Villadangos JA, Shortman K (2011) The acquisition of antigen cross-presentation function by newly formed dendritic cells. J Immunol 186:5184–5192CrossRefPubMedGoogle Scholar
  33. 33.
    Bedoui S, Prato S, Mintern J, Gebhardt T, Zhan Y, Lew AM, Heath WR, Villadangos JA, Segura E (2009) Characterization of an immediate splenic precursor of CD8+ dendritic cells capable of inducing antiviral T cell responses. J Immunol 182:4200–4207CrossRefPubMedGoogle Scholar
  34. 34.
    Segura E, Kapp E, Gupta N, Wong J, Lim J, Ji H, Heath WR, Simpson R, Villadangos JA (2010) Differential expression of pathogen-recognition molecules between dendritic cell subsets revealed by plasma membrane proteomic analysis. Mol Immunol 47:1765–1773CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.The Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
  2. 2.Institut Curie, INSERM U932ParisFrance

Personalised recommendations