Advertisement

Bioinformatics Identification of Antigenic Peptide: Predicting the Specificity of Major MHC Class I and II Pathway Players

  • Ole Lund
  • Edita Karosiene
  • Claus Lundegaard
  • Mette Voldby Larsen
  • Morten Nielsen
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 960)

Abstract

Bioinformatics methods for immunology have become increasingly used over the last decade and now form an integrated part of most epitope discovery projects. This wide usage has led to the confusion of defining which of the many methods to use for what problems. In this chapter, an overview is given focusing on the suite of tools developed at the Technical University of Denmark.

Key words

Immune Epitope MHC, HLA Class I Class II Antigen processing Proteasome TAP Visualization Bioinformatics Prediction Web server. 

References

  1. 1.
    Sette A, Sidney J (1999) Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism. Immunogenetics 50(3–4):201–212CrossRefPubMedGoogle Scholar
  2. 2.
    Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152(1):163–175PubMedGoogle Scholar
  3. 3.
    Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219CrossRefPubMedGoogle Scholar
  4. 4.
    Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M (2008) NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Res 36(Web Server issue):W509–W512. doi:gkn202 (pii) 10.1093/nar/gkn202CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12(5):1007–1017. doi: 10.1110/ps.0239403 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hoof I, Peters B, Sidney J, Pedersen LE, Sette A, Lund O, Buus S, Nielsen M (2009) NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 61(1):1–13. doi: 10.1007/s00251-008-0341-z CrossRefPubMedGoogle Scholar
  7. 7.
    Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, Justesen S, Roder G, Peters B, Sette A, Lund O, Buus S (2007) NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS One 2(8):e796. doi: 10.1371/journal.pone.0000796 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang H, Lund O, Nielsen M (2009) The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding. Bioinformatics 25(10):1293–1299. doi: 10.1093/bioinformatics/btp137 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Peters B, Bui HH, Frankild S, Nielson M, Lundegaard C, Kostem E, Basch D, Lamberth K, Harndahl M, Fleri W, Wilson SS, Sidney J, Lund O, Buus S, Sette A (2006) A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput Biol 2(6):e65. doi:06-PLCB-RA-0058R2 (pii) 10.1371/journal.pcbi.0020065CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lin HH, Ray S, Tongchusak S, Reinherz EL, Brusic V (2008) Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research. BMC Immunol 9:8. doi:1471-2172-9-8 (pii) 10.1186/1471-2172-9-8CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhang GL, Ansari HR, Bradley P, Cawley GC, Hertz T, Hu X, Jojic N, Kim Y, Kohlbacher O, Lund O, Lundegaard C, Magaret CA, Nielsen M, Papadopoulos H, Raghava GP, Tal VS, Xue LC, Yanover C, Zhu S, Rock MT, Crowe JE Jr, Panayiotou C, Polycarpou MM, Duch W, Brusic V (2011) Machine learning competition in immunology—Prediction of HLA class I binding peptides. J Immunol Methods. doi:S0022-1759(11)00255-9 (pii) 10.1016/j.jim.2011.09.010Google Scholar
  12. 12.
    Zhang H, Lundegaard C, Nielsen M (2009) Pan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods. Bioinformatics 25(1):83–89. doi: 10.1093/bioinformatics/btn579 CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang L, Udaka K, Mamitsuka H, Zhu S (2011) Toward more accurate pan-specific MHC-peptide binding prediction: a review of current methods and tools. Brief Bioinform. doi:bbr060 (pii) 10.1093/bib/bbr060Google Scholar
  14. 14.
    Lundegaard C, Hoof I, Lund O, Nielsen M, Lundegaard C, Hoof I, Lund O, Nielsen M (2010) State of the art and challenges in sequence based T-cell epitope prediction. Immunome Res 6(Suppl 2):S3. doi:1745-7580-6-S2-S3 (pii) 10.1186/1745-7580-6-S2-S3CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Karosiene E, Lundegaard C, Lund O, Nielsen M (2011) NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics. doi: 10.1007/s00251-011-0579-8
  16. 16.
    Nielsen M, Lund O, Buus S, Lundegaard C (2010) MHC class II epitope predictive algorithms. Immunology 130(3):319–328. doi: 10.1111/j.1365-2567.2010.03268.x CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Godkin AJ, Smith KJ, Willis A, Tejada-Simon MV, Zhang J, Elliott T, Hill AV (2001) Naturally processed HLA class II peptides reveal highly conserved immunogenic flanking region sequence preferences that reflect antigen processing rather than peptide-MHC interactions. J Immunol 166(11):6720–6727CrossRefPubMedGoogle Scholar
  18. 18.
    Lovitch SB, Pu Z, Unanue ER (2006) Amino-terminal flanking residues determine the conformation of a peptide-class II MHC complex. J Immunol 176(5):2958–2968. doi:176/5/2958 (pii)CrossRefPubMedGoogle Scholar
  19. 19.
    Nielsen M, Lund O (2009) NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinformatics 10:296. doi: 10.1186/1471-2105-10-296 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nielsen M, Lundegaard C, Blicher T, Peters B, Sette A, Justesen S, Buus S, Lund O (2008) Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLoS Comput Biol 4(7):e1000107. doi: 10.1371/journal.pcbi.1000107 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nielsen M, Justesen S, Lund O, Lundegaard C, Buus S (2010) NetMHCIIpan-2.0—Improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure. Immunome Res 6:9. doi:1745-7580-6-9 (pii) 10.1186/1745-7580-6-9CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lin HH, Zhang GL, Tongchusak S, Reinherz EL, Brusic V (2008) Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. BMC Bioinformatics 9(Suppl 12):S22. doi: 10.1186/1471-2105-9-S12-S22 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wang P, Sidney J, Dow C, Mothe B, Sette A, Peters B (2008) A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol 4(4):e1000048. doi: 10.1371/journal.pcbi.1000048 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bordner AJ, Mittelmann HD (2010) MultiRTA: a simple yet reliable method for predicting peptide binding affinities for multiple class II MHC allotypes. BMC Bioinformatics 11:482. doi: 10.1186/1471-2105-11-482 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhang GL, Deluca DS, Keskin DB, Chitkushev L, Zlateva T, Lund O, Reinherz EL, Brusic V (2010) MULTIPRED2: a computational system for large-scale identification of peptides predicted to bind to HLA supertypes and alleles. J Immunol Methods. doi:S0022-1759(10)00345-5 (pii) 10.1016/j.jim.2010.11.009Google Scholar
  26. 26.
    Kullback S, Leibler RA (1951) On Information and Sufficiency. Ann Math Statist 22:76–86CrossRefGoogle Scholar
  27. 27.
    Rapin N, Hoof I, Lund O, Nielsen M. The MHC motif viewer: a visualization tool for MHC binding motifs. Curr Protoc Immunol. 2010; Chapter 18: Unit 18 17. doi: 10.1002/0471142735.im1817s88.
  28. 28.
    Erup Larsen M, Kloverpris H, Stryhn A, Koofhethile CK, Sims S, Ndung’u T, Goulder P, Buus S, Nielsen M (2011) HLArestrictor–a tool for patient-specific predictions of HLA restriction elements and optimal epitopes within peptides. Immunogenetics 63(1):43–55. doi: 10.1007/s00251-010-0493-5 CrossRefPubMedGoogle Scholar
  29. 29.
    Rao X, Costa AI, van Baarle D, Kesmir C (2009) A comparative study of HLA binding affinity and ligand diversity: implications for generating immunodominant CD8+ T cell responses. J Immunol 182(3):1526–1532. doi:182/3/1526 (pii)CrossRefPubMedGoogle Scholar
  30. 30.
    Stranzl T, Larsen MV, Lundegaard C, Nielsen M (2010) NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics 62(6):357–368. doi: 10.1007/s00251-010-0441-4 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hoof I, Perez CL, Buggert M, Gustafsson RK, Nielsen M, Lund O, Karlsson AC (2010) Interdisciplinary analysis of HIV-specific CD8+ T cell responses against variant epitopes reveals restricted TCR promiscuity. J Immunol 184(9):5383–5391. doi:jimmunol.0903516 (pii) 10.4049/jimmunol.0903516CrossRefPubMedGoogle Scholar
  32. 32.
    Larsen MV, Lelic A, Parsons R, Nielsen M, Hoof I, Lamberth K, Loeb MB, Buus S, Bramson J, Lund O (2010) Identification of CD8+ T cell epitopes in the West Nile virus polyprotein by reverse-immunology using NetCTL. PLoS One 5(9):e12697. doi: 10.1371/journal.pone.0012697 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nielsen M, Lundegaard C, Lund O, Kesmir C (2005) The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 57(1–2):33–41. doi: 10.1007/s00251-005-0781-7 CrossRefPubMedGoogle Scholar
  34. 34.
    Larsen MV, Lundegaard C, Lamberth K, Buus S, Brunak S, Lund O, Nielsen M (2005) An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur J Immunol 35(8):2295–2303. doi: 10.1002/eji.200425811 CrossRefPubMedGoogle Scholar
  35. 35.
    Peters B, Bulik S, Tampe R, Van Endert PM, Holzhutter HG (2003) Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. J Immunol 171(4):1741–1749CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Ole Lund
    • 1
  • Edita Karosiene
    • 2
  • Claus Lundegaard
    • 1
  • Mette Voldby Larsen
    • 2
  • Morten Nielsen
    • 2
  1. 1.Department of Systems Biology, Center for Biological Sequence AnalysisTechnical University of DenmarkKongens LyngbyDenmark
  2. 2.Center for Biological Sequence Analysis, Department of Systems BiologyTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations