High-Resolution Imaging of 2D Outer Membrane Protein F Crystals by Atomic Force Microscopy

  • Dimitrios Fotiadis
  • Daniel J. Müller
Part of the Methods in Molecular Biology book series (MIMB, volume 955)


In this chapter the methodological bases are provided to achieve subnanometer resolution on two-dimensional (2D) membrane protein crystals by atomic force microscopy (AFM). This is outlined in detail with the example of AFM studies of the outer membrane protein F (OmpF) from the bacterium Escherichia coli (E. coli). We describe in detail the high-resolution imaging of 2D OmpF crystals in aqueous solution and under near-physiological conditions. The topographs of OmpF, and stylus effects and artifacts encountered when imaging by AFM are discussed.

Key words

Atomic force microscopy Biological membranes High resolution Outer membrane protein F Stylus artifacts Topography 



We are grateful to Andreas Engel for his continous support. This work was supported by the Swiss National Foundation for Scientific Research (Grant 31003A_125150 to D.F.), the National Center of Competence in Research (NCCR) TransCure, and the European Science Foundation (Grant 09-EuroSYNBIO-FP-012 NANOCELL to D.F. and D.J.M.).


  1. 1.
    Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933PubMedCrossRefGoogle Scholar
  2. 2.
    Gerber C, Lang HP (2007) How the doors to the nanoworld were opened. Nat Nanotec 1:3–5CrossRefGoogle Scholar
  3. 3.
    Dufrêne YF (2008) Towards nanomicrobiology using atomic force microscopy. Nat Rev Microbiol 6:674–680PubMedCrossRefGoogle Scholar
  4. 4.
    Engel A, Gaub HE (2008) Structure and mechanics of membrane proteins. Annu Rev Biochem 77:127–148PubMedCrossRefGoogle Scholar
  5. 5.
    Frederix PLTM, Akiyama T, Staufer U, Gerber C, Fotiadis D, Müller DJ et al (2003) Atomic force bio-analytics. Curr Opin Chem Biol 7:641–647PubMedCrossRefGoogle Scholar
  6. 6.
    Müller DJ, Dufrêne YF (2008) Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nano­technol 3:261–269PubMedCrossRefGoogle Scholar
  7. 7.
    Müller DJ, Helenius J, Alsteens D, Dufrêne YF (2009) Force probing surfaces of living cells to molecular resolution. Nat Chem Biol 5:383–390PubMedCrossRefGoogle Scholar
  8. 8.
    Puchner EM, Gaub HE (2009) Force and function: probing proteins with AFM-based force spectroscopy. Curr Opin Struct Biol 19:605–614PubMedCrossRefGoogle Scholar
  9. 9.
    Engel A, Lyubchenko Y, Müller DJ (1999) Atomic force microscopy: a powerful tool to observe biomolecules at work. Trends Cell Biol 9:77–80PubMedCrossRefGoogle Scholar
  10. 10.
    Engel A, Müller DJ (2000) Observing single biomolecules at work with the atomic force microscope. Nat Struct Biol 7:715–718PubMedCrossRefGoogle Scholar
  11. 11.
    Müller DJ, Engel A (2007) Atomic force microscopy and spectroscopy of native membrane proteins. Nat Protoc 2:2191–2197PubMedCrossRefGoogle Scholar
  12. 12.
    Müller DJ, Wu N, Palczewski K (2008) Vertebrate membrane proteins: structure, function, and insights from biophysical approaches. Pharmacol Rev 60:43–78PubMedCrossRefGoogle Scholar
  13. 13.
    Müller DJ (2008) AFM: a nanotool in membrane biology. Biochemistry 47:7986–7998PubMedCrossRefGoogle Scholar
  14. 14.
    Han WH, Lindsay SM, Dlakic M, Harrington RE (1997) Kinked DNA. Nature 386:563PubMedCrossRefGoogle Scholar
  15. 15.
    Han WH, Lindsay SM, Jing TW (1996) A magnetically driven oscillating probe microscope for operation in liquids. Appl Phys Lett 69:4111–4113CrossRefGoogle Scholar
  16. 16.
    Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M et al (1994) Tapping mode atomic force microscopy in liquids. Appl Phys Lett 64:1738–1740CrossRefGoogle Scholar
  17. 17.
    Putman CAJ, Vanderwerf KO, de Grooth BG, Vanhulst NF, Greve J (1994) Tapping mode atomic-force microscopy in liquid. Appl Phys Lett 64:2454–2456CrossRefGoogle Scholar
  18. 18.
    Zhong Q, Inniss D, Kjoller K, Elings VB (1993) Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf Sci Lett 290:L688–L692CrossRefGoogle Scholar
  19. 19.
    Fukuma T (2008) Instrumentation and biological applications of high-resolution frequency modulation atomic force microscopy in liquid. J Nano Res 4:1–10CrossRefGoogle Scholar
  20. 20.
    Fukuma T, Jarvis SP (2006) Development of liquid environment frequency modulation atomic force microscope with low noise deflection sensor for cantilevers of various dimensions. Rev Sci Inst 77:043701CrossRefGoogle Scholar
  21. 21.
    Hoogenboom BW, Hug HJ, Pellmont Y, Martin S, Frederix PLTM, Fotiadis D et al (2006) Quantitative dynamic-mode scanning force microscopy in liquid. Appl Phys Letters 88:193109CrossRefGoogle Scholar
  22. 22.
    Hoogenboom BW, Suda K, Engel A, Fotiadis D (2007) The supramolecular assemblies of voltage-dependent anion channels in the native membrane. J Mol Biol 370:246–255PubMedCrossRefGoogle Scholar
  23. 23.
    Hansma PK, Schitter G, Fantner GE, Prater C (2006) Applied physics. High-speed atomic force microscopy. Science 314:601–602PubMedCrossRefGoogle Scholar
  24. 24.
    Yokokawa M, Wada C, Ando T, Sakai N, Yagi A, Yoshimura SH et al (2006) Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL. EMBO J 25:4567–4576PubMedCrossRefGoogle Scholar
  25. 25.
    Müller DJ, Fotiadis D, Scheuring S, Müller SA, Engel A (1999) Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. Biophys J 76:1101–1111PubMedCrossRefGoogle Scholar
  26. 26.
    Fotiadis D, Scheuring S, Müller SA, Engel A, Müller DJ (2002) Imaging and manipulation of biological structures with the AFM. Micron 33:385–397PubMedCrossRefGoogle Scholar
  27. 27.
    Cowan SW, Schirmer T, Rummel G, Steiert M, Ghosh R, Pauptit RA et al (1992) Crystal structures explain functional properties of two E. coli porins. Nature 358:727–733PubMedCrossRefGoogle Scholar
  28. 28.
    Dorset DL, Engel A, Häner M, Massalski A, Rosenbusch JP (1983) Two-dimensional crystal packing of matrix porin. A channel forming protein in Escherichia coli outer membranes. J Mol Biol 165:701–710PubMedCrossRefGoogle Scholar
  29. 29.
    Hoenger A, Gross H, Aebi U, Engel A (1990) Localization of the lipopolysaccharides in metal-shadowed reconstituted lipid-porin membranes. J Struct Biol 103:185–195CrossRefGoogle Scholar
  30. 30.
    Hoenger A, Pages JM, Fourel D, Engel A (1993) The orientation of porin OmpF in the outer membrane of Escherichia coli. J Mol Biol 233:400–413PubMedCrossRefGoogle Scholar
  31. 31.
    Müller DJ, Engel A (1999) Voltage and pH-induced channel closure of porin OmpF visualized by atomic force microscopy. J Mol Biol 285:1347–1351PubMedCrossRefGoogle Scholar
  32. 32.
    Schabert FA, Engel A (1994) Reproducible acquisition of Escherichia coli porin surface topographs by atomic force microscopy. Biophys J 67:2394–2403PubMedCrossRefGoogle Scholar
  33. 33.
    Schabert FA, Henn C, Engel A (1995) Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy. Science 268:92–94PubMedCrossRefGoogle Scholar
  34. 34.
    Engel A, Massalski A, Schindler H, Dorset DL, Rosenbusch JP (1985) Porin channel triplets merge into single outlets in Escherichia coli outer membranes. Nature 317:643–645PubMedCrossRefGoogle Scholar
  35. 35.
    Tanaka M, Sackmann E (2005) Polymer-supported membranes as models of the cell surface. Nature 437:656–663PubMedCrossRefGoogle Scholar
  36. 36.
    Müller DJ, Amrein M, Engel A (1997) Adsorption of biological molecules to a solid support for scanning probe microscopy. J Struct Biol 119:172–188PubMedCrossRefGoogle Scholar
  37. 37.
    Müller DJ, Engel A (2008) Strategies to prepare and characterize native membrane proteins and protein membranes by AFM. Curr Opin Coll Int Sci 13:338–350CrossRefGoogle Scholar
  38. 38.
    Müller DJ, Sass H-J, Müller S, Büldt G, Engel A (1999) Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane. J Mol Biol 285:1903–1909PubMedCrossRefGoogle Scholar
  39. 39.
    Müller DJ, Engel A (1997) The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. Biophys J 73:1633–1644PubMedCrossRefGoogle Scholar
  40. 40.
    Misell DL, Brown EB (1987) Electron diffraction: an introduction for biologists. In: Glauert AM (ed) Practical methods in electron microscopy, vol 2. Elsevier Science Publishers B.V., The NetherlandsGoogle Scholar
  41. 41.
    Schwarz UD, Haefke H, Reimann P, Güntherodt H-J (1994) Tip artefacts in scanning force microscopy. J Microsc 173:183–197CrossRefGoogle Scholar
  42. 42.
    Xu S, Arnsdorf MF (1994) Calibration of the scanning (atomic) force microscope with gold particles. J Microsc 173:199–210PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Biochemistry and Molecular MedicineUniversity of BernBernSwitzerland
  2. 2.ETH Zürich, Biosystems Science and Engineering (BSSE)BaselSwitzerland

Personalised recommendations