Analyzing PPARα/Ligand Interactions by Chemical Cross-Linking and High-Resolution Mass Spectrometry

  • Mathias Q. Müller
  • Christian H. Ihling
  • Andrea Sinz
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 952)

Abstract

The combination of chemical cross-linking and high-resolution mass spectrometry is an emerging technique for monitoring conformational changes in proteins induced by drug binding. In this chapter, we describe this approach for gaining insights into the conformational changes of the peroxisome proliferator-activated receptor alpha after binding of low-molecular weight ligands. Our strategy provides a basis to efficiently characterize target protein-drug interactions.

Key words

PPARα/ligand interaction Chemical cross-linking Isotope labeling SDS-PAGE In-gel digestion Nano-HPLC High-resolution mass spectrometry 

References

  1. 1.
    Michalik L, Wahli W (1999) Peroxisome proliferator-activated receptors: three isotypes for a multitude of functions. Curr Opin Biotechnol 10:564–570PubMedCrossRefGoogle Scholar
  2. 2.
    Plutzky J (2003) The potential role of peroxisome proliferator-activated receptors on inflammation in type 2 diabetes mellitus and atherosclerosis. Am J Cardiol 92:34J–41JPubMedCrossRefGoogle Scholar
  3. 3.
    Evans RM, Barish GD, Wang Y (2004) PPARs and the complex journey to obesity. Nat Med 10:355–361PubMedCrossRefGoogle Scholar
  4. 4.
    Issemann I, Prince RA, Tugwood JD, Green S (1993) The peroxisome proliferator-activated receptor: retinoid X receptor heterodimer is activated by fatty acids and fibrate hypolipidaemic drugs. J Mol Endocrinol 11:37–47PubMedCrossRefGoogle Scholar
  5. 5.
    Young MM, Tang N, Hempel JC, Oshiro CM, Taylor EW, Kuntz ID et al (2000) High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry. Proc Natl Acad Sci U S A 97:5802–5806PubMedCrossRefGoogle Scholar
  6. 6.
    Sinz A (2003) Chemical cross-linking and mass spectrometry for mapping three-dimensional structures of proteins and protein complexes. J Mass Spectrom 38:1225–1237PubMedCrossRefGoogle Scholar
  7. 7.
    Sinz A (2006) Chemical cross-linking and mass spectrometry to map three-dimensional ­protein structures and protein-protein interactions. Mass Spectrom Rev 25:663–682PubMedCrossRefGoogle Scholar
  8. 8.
    Lamos S, Krusemark C, Mcgee C, Scalf M, Smith L, Belshaw P (2006) Mixed isotope photoaffinity reagents for identification of small-molecule targets by mass spectrometry. Angew Chem Int Ed 45:4329–4333CrossRefGoogle Scholar
  9. 9.
    Sinz A (2006) Isotope-labeled photoaffinity reagents and mass spectrometry to identify protein-ligand interactions. Angew Chem Int Ed 46:660–662CrossRefGoogle Scholar
  10. 10.
    Müller MQ, de Koning LJ, Schmidt A, Ihling C, Syha Y, Rau O et al (2009) An innovative method to study target protein-drug interactions by mass spectrometry. J Med Chem 52:2875–2879PubMedCrossRefGoogle Scholar
  11. 11.
    Ihling C, Schmidt A, Kalkhof S, Schulz DM, Stingl C, Mechtler K et al (2006) Isotope-labeled cross-linkers and Fourier transform ion cyclotron resonance mass spectrometry for structural analysis of a protein/peptide complex. J Am Soc Mass Spectrom 17:1100–1113PubMedCrossRefGoogle Scholar
  12. 12.
    Schmidt A, Kalkhof S, Ihling C, Cooper DMF, Sinz A (2005) Mapping protein interfaces by chemical cross-linking and Fourier transform ion cyclotron resonance mass spectrometry: application to a calmodulin/adenylyl cyclase 8 peptide complex. Eur J Mass Spectrom 11:525–534CrossRefGoogle Scholar
  13. 13.
    Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in ­polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262PubMedCrossRefGoogle Scholar
  14. 14.
    Peri S, Steen H, Pandey A (2001) GPMAW—a software tool for analyzing proteins and peptides. Trends Biochem Sci 26:687–689PubMedCrossRefGoogle Scholar
  15. 15.
    Kalkhof S, Sinz A (2008) Chances and pitfalls of chemical cross-linking with amine-reactive N-hydroxysuccinimide esters. Anal Bioanal Chem 392:305–312PubMedCrossRefGoogle Scholar
  16. 16.
    Mädler S, Bich C, Touboul D, Zenobi R (2009) Chemical cross-linking with NHS esters: a systematic study on amino acid reactivities. J Mass Spectrom 44:694–706PubMedCrossRefGoogle Scholar
  17. 17.
    Müller MQ, Roth C, Sträter N, Sinz A (2008) Expression and purification of the ligand-binding domain of peroxisome proliferator-activated receptor alpha (PPARalpha). Protein Expr Purif 62:185–189PubMedCrossRefGoogle Scholar
  18. 18.
    Xu HE, Stanley TB, Montana VG, Lambert MH, Shearer BG, Cobb JE et al (2002) Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARalpha. Nature 415:813–817PubMedCrossRefGoogle Scholar
  19. 19.
    Rau O, Syha Y, Zettl H, Kock M, Bock A, Schubert-Zsilavecz M (2008) Alpha-alkyl substituted pirinixic acid derivatives as potent dual agonists of the peroxisome proliferator activated receptor alpha and gamma. Arch Pharm 341:191–195CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mathias Q. Müller
    • 1
  • Christian H. Ihling
    • 1
  • Andrea Sinz
    • 1
  1. 1.Department of Pharmaceutical Chemistry and BioanalyticsInstitute of Pharmacy, Martin-Luther-Universität Halle-WittenbergHalle (Saale)Germany

Personalised recommendations