Nanoimaging pp 171-193

Part of the Methods in Molecular Biology book series (MIMB, volume 950) | Cite as

Semiautomatic, High-Throughput, High-Resolution Protocol for Three-Dimensional Reconstruction of Single Particles in Electron Microscopy

  • Carlos Oscar Sorzano
  • J. M. de la Rosa Trevín
  • J. Otón
  • J. J. Vega
  • J. Cuenca
  • A. Zaldívar-Peraza
  • J. Gómez-Blanco
  • J. Vargas
  • A. Quintana
  • Roberto Marabini
  • José María Carazo
Protocol

Abstract

In this chapter we describe the steps needed for reconstructing the three-dimensional structure of a macromolecular complex starting from its projections collected in electron micrographs. The concepts are shown through the use of Xmipp 3.0, a software suite specifically designed for the image processing of biological structures imaged with electron or X-ray microscopy. We illustrate the image processing workflow by applying it to the images of Bovine Papilloma virus published in Wolf et al. (Proc Natl Acad Sci USA 107:6298–6303, 2010). We show that in the case of high-quality, homogeneous datasets with a priori knowledge about the initial volume, we can have a high-resolution 3D reconstruction in less than 1 day using a computer cluster with only 32 processors.

Key words

Single particle analysis Electron microscopy Image processing 3D reconstruction Workflows 

References

  1. 1.
    Frank J (2006) Three-dimensional electron microscopy of macromolecular assemblies: visualization of biological molecules in their native state. Oxford University Press, New YorkCrossRefGoogle Scholar
  2. 2.
    Sorzano COS, Jonic S, Cottevieille M et al (2007) 3D electron microscopy of biological nanomachines: principles and applications. Eur Biophys J 36:995–1013PubMedCrossRefGoogle Scholar
  3. 3.
    Wang L, Sigworth FJ (2006) Cryo-EM and single particles. Physiology 21:13–18PubMedCrossRefGoogle Scholar
  4. 4.
    Frank J, Radermacher M, Penczek P et al (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116:190–199PubMedCrossRefGoogle Scholar
  5. 5.
    Ludtke SJ, Baldwin PR, Chiu W (1999) EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128:82–97PubMedCrossRefGoogle Scholar
  6. 6.
    van Heel M, Harauz G, Orlova EV et al (1996) A new generation of the IMAGIC image processing system. J Struct Biol 116:17–24PubMedCrossRefGoogle Scholar
  7. 7.
    Sorzano COS, Marabini R, Velázquez-Muriel J et al (2004) XMIPP: a new generation of an open-source image processing package for electron microscopy. J Struct Biol 148:194–204PubMedCrossRefGoogle Scholar
  8. 8.
    Sorzano COS, Jonic S, Núñez-Ramírez R et al (2007) Fast, robust and accurate determination of transmission electron microscopy contrast transfer function. J Struct Biol 160:249–262PubMedCrossRefGoogle Scholar
  9. 9.
    Sorzano COS, Otero A, Olmos EM, Carazo JM (2009) Error analysis in the determination of the electron microscopical contrast transfer function parameters from experimental power spectra. BMC Struct Biol 9:18PubMedCrossRefGoogle Scholar
  10. 10.
    Oppenheim AV, Schafer RW, Buck JR (1999) Discrete-time signal processing. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  11. 11.
    Sorzano COS, Iriarte-Ruiz A, Marabini R, Carazo JM (2009) Effects of the downsampling scheme on three-dimensional electron microscopy of single particles. In: Proc. IEEE workshop Intell Signal Proc. Budapest, HungaryGoogle Scholar
  12. 12.
    Jonic S, Sorzano COS, Cottevieille M et al (2007) A novel method for improvement of visualization of power spectra for sorting cryo-electron micrographs and their local areas. J Struct Biol 157:156–167PubMedCrossRefGoogle Scholar
  13. 13.
    Mindell JA, Grigorieff N (2003) Accurate determination of local defocus and specimen tilt in electron microscopy. J Struct Biol 142:334–347PubMedCrossRefGoogle Scholar
  14. 14.
    Akarun L, Yardunci Y, Cetin AE (1997) Adaptive methods for dithering color images. IEEE Trans Image Process 6:950–955PubMedCrossRefGoogle Scholar
  15. 15.
    Bracewell RN (2006) Fourier analysis and imaging. Springer, New YorkGoogle Scholar
  16. 16.
    Sorzano COS, Recarte E, Alcorlo M et al (2009) Automatic particle selection from electron micrographs using machine learning techniques. J Struct Biol 167:252–260PubMedCrossRefGoogle Scholar
  17. 17.
    Penczek PA, Zhu J, Frank J (1996) A common-lines based method for determining orientations for N  >  3 particle projections simultaneously. Ultramicroscopy 63:205–218PubMedCrossRefGoogle Scholar
  18. 18.
    van Heel M (1987) Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21:111–124PubMedCrossRefGoogle Scholar
  19. 19.
    Sorzano COS, Bilbao-Castro JR, Shkolnisky Y et al (2010) A clustering approach to multireference alignment of single-particle projections in electron microscopy. J Struct Biol 171:197–206PubMedCrossRefGoogle Scholar
  20. 20.
    Liu W, Pokharel PP, Príncipe JC (2007) Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans Signal Process 55:5286–5298CrossRefGoogle Scholar
  21. 21.
    Scheres SHW, Valle M, Núñez R et al (2005) Maximum-likelihood multi-reference refinement for electron microscopy images. J Mol Biol 348:139–149PubMedCrossRefGoogle Scholar
  22. 22.
    Pascual-Montano A, Donate LE, Valle M et al (2001) A novel neural network tecnique for analysis and classification of EM single-particle images. J Struct Biol 133:233–245PubMedCrossRefGoogle Scholar
  23. 23.
    Crowther RA, Amos LA (1971) Harmonic analysis of electron microscope images with rotational symmetry. J Mol Biol 60:123–130PubMedCrossRefGoogle Scholar
  24. 24.
    Bárcena M, San Martin MC, Weise F, Ayora S, Alonso JC, Carazo JM (1998) Polymorphic quaternary organization of the Bacillus subtilis bacteriophage SPP1 replicative helicase (G40P). J Mol Biol 283:809–819PubMedCrossRefGoogle Scholar
  25. 25.
    Fernández JJ, Luque D, Castón JR, Carrascosa JL (2008) Sharpening high resolution information in single particle electron cryomicroscopy. J Struct Biol 164:170–175PubMedCrossRefGoogle Scholar
  26. 26.
    Frank J, Penczek P (1995) On the correction of the contrast transfer function in biological electron microscopy. Optik 98:125–129Google Scholar
  27. 27.
    Scheres SHW, Gao H, Valle M et al (2007) Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat Methods 4:27–29PubMedCrossRefGoogle Scholar
  28. 28.
    Wolf M, Garcea RL, Grigorieff N, Harrison SC (2010) Subunit interactions in bovine papillomavirus. Proc Natl Acad Sci USA 107:6298–6303PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang X, Jin L, Fang Q et al (2010) A cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 141:472–482PubMedCrossRefGoogle Scholar
  30. 30.
    Scheres SHW, Núñez-Ramírez R, Sorzano COS et al (2008) Image processing for electron microscopy single-particle analysis using XMIPP. Nat Protoc 3:977–990PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Carlos Oscar Sorzano
    • 1
  • J. M. de la Rosa Trevín
    • 1
  • J. Otón
    • 1
  • J. J. Vega
    • 1
  • J. Cuenca
    • 1
  • A. Zaldívar-Peraza
    • 1
  • J. Gómez-Blanco
    • 1
  • J. Vargas
    • 1
  • A. Quintana
    • 1
  • Roberto Marabini
    • 2
  • José María Carazo
    • 1
  1. 1.Biocomputing Unit, National Center of Biotechnology (CSIC)Universidad Autónoma de MadridMadridSpain
  2. 2.Escuela Politecnica SuperiorUniversidad Autónoma de MadridMadridSpain

Personalised recommendations