Microfluidic Diagnostics pp 387-401

Part of the Methods in Molecular Biology book series (MIMB, volume 949) | Cite as

Multilayer Microfluidic Poly(Ethylene Glycol) Diacrylate Hydrogels

Protocol

Abstract

Development of robust, in vivo like tissues in vitro holds the potential to create regenerative medicine-based therapeutics, provide more physiologically significant preclinical models and supply a pharmacological and toxicological screening platform that reflects in vivo systems in both complexity and function. This protocol describes a simple, robust, multilayer replica molding technique in which poly(dimethylsiloxane) (PDMS) and poly(ethylene glycol) diacrylate (PEGDA) are serially replica molded to develop microfluidic PEGDA hydrogel networks embedded within independently fabricated PDMS housings, using a combination of soft and photo-lithography. This work has direct applications toward the development of robust, complex, cell-laden hydrogels for in vitro diagnostics and regenerative medicine applications.

Key words

Hydrogel Poly (ethylene glycol) Microfabrication Microfluidics Photolithography Soft lithography 

References

  1. 1.
    Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373CrossRefGoogle Scholar
  2. 2.
    Weibel DB, Diluzio WR, Whitesides GM (2007) Microfabrication meets microbiology., Nature reviews. Microbiology 5:209–218Google Scholar
  3. 3.
    Khademhosseini A, Langer R, Borenstein J, Vacanti JP (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci USA 103:2480–2487CrossRefGoogle Scholar
  4. 4.
    Gómez-Sjöberg R, Leyrat AA, Pirone DM, Chen CS, Quake SR (2007) Versatile, fully automated, microfluidic cell culture system. Anal Chem 79:8557–8563CrossRefGoogle Scholar
  5. 5.
    Maerkl SJ, Quake SR (2007) A systems approach to measuring the binding energy landscapes of transcription factors. Science (New York, NY) 315:233–237CrossRefGoogle Scholar
  6. 6.
    Chen CS (1997) Geometric Control of Cell Life and Death. Science 276:1425–1428CrossRefGoogle Scholar
  7. 7.
    Quist AP, Pavlovic E, Oscarsson S (2005) Recent advances in microcontact printing. Anal Bioanal Chem 381:591–600CrossRefGoogle Scholar
  8. 8.
    Hoganson DM, Anderson JL, Weinberg EF, Swart EJ, Orrick BK, Borenstein JT, Vacanti JP (2010) Branched vascular network architecture: a new approach to lung assist device technology. J Thorac Cardiovasc Surg 140:990–995CrossRefGoogle Scholar
  9. 9.
    Carraro A, Hsu W-M, Kulig KM, Cheung WS, Miller ML, Weinberg EJ, Swart EF, Kaazempur-Mofrad M, Borenstein JT, Vacanti JP, Neville C (2008) In vitro analysis of a hepatic device with intrinsic microvascular-based channels. Biomed Microdevices 10:795–805CrossRefGoogle Scholar
  10. 10.
    Ling Y, Rubin J, Deng Y, Huang C, Demirci U, Karp JM, Khademhosseini A (2007) A cell-laden microfluidic hydrogel. Lab Chip 7:756–762CrossRefGoogle Scholar
  11. 11.
    Golden AP, Tien J (2007) Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7:720–725CrossRefGoogle Scholar
  12. 12.
    Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD (2007) Microfluidic scaffolds for tissue engineering. Nat Mater 6:908–915CrossRefGoogle Scholar
  13. 13.
    Tsang VL, Chen AA, Cho LM, Jadin KD, Sah RL, DeLong S, West JL, Bhatia SN (2007) Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J 21:790–801CrossRefGoogle Scholar
  14. 14.
    Chin VI, Taupin P, Sanga S, Scheel J, Gage FH, Bhatia SN (2004) Microfabricated platform for studying stem cell fates. Biotechnol Bioeng 88:399–415CrossRefGoogle Scholar
  15. 15.
    Albrecht DR, Tsang VL, Sah RL, Bhatia SN (2005) Photo- and electropatterning of hydrogel-encapsulated living cell arrays. Lab Chip 5:111–118CrossRefGoogle Scholar
  16. 16.
    Cuchiara MP, Allen ACB, Chen TM, Miller JS, West JL (2010) Multilayer microfluidic PEGDA hydrogels. Biomaterials 31:5491–5497, Elsevier LtdCrossRefGoogle Scholar
  17. 17.
    King KR, Wang CCJ, Kaazempur-Mofrad MR, Vacanti JP, Borenstein JT (2004) Biodegradable Microfluidics. Adv Mater 16:2007–2012CrossRefGoogle Scholar
  18. 18.
    Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–4314CrossRefGoogle Scholar
  19. 19.
    Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM (2008) FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip 8:2146–2150CrossRefGoogle Scholar
  20. 20.
    Martinez AW, Phillips ST, Whitesides, GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape 2008.Google Scholar
  21. 21.
    Grimes A, Breslauer DN, Long M, Pegan J, Lee LP, Khine M (2008) Shrinky-Dink microfluidics: rapid generation of deep and rounded patterns. Lab Chip 8:170–172CrossRefGoogle Scholar
  22. 22.
    Miller J, West J (2008) Biomimetic Hydrogels to Support and Guide Tissue Formation. In: Khademhosseini A, Borenstein J, Toner M, Takayama S (eds) Micro and Nanoengineering of the Cell Microenvironment, 1st edn. Artech House, Boston, pp 101–120Google Scholar
  23. 23.
    Bryant SJ, Anseth KS (2006) Photopolymerization of Hydrogel Scaffolds. In: Ma PX, Elisseeff JH (eds) Scaffolds in Tissue Engineering, 1st edn. Taylor and Francis, New York, pp 71–90Google Scholar
  24. 24.
    Mcdonald JC, Duffy DC, Anderson JR, Chiu DT (2000) Review General Fabrication of microfluidic systems in poly (dimethylsiloxane), Review Literature And Arts Of The Americas.Google Scholar
  25. 25.
    Wong AP, Perez-castillejos R, Love JC, Whitesides GM (2008) Partitioning microfluidic channels with hydrogel to construct tunable 3-D cellular microenvironments. Cell 29:1853–1861Google Scholar
  26. 26.
    Hu S, Ren X, Bachman M, Sims CE, Li GP, Allbritton NL (2004) Tailoring the Surface Properties of Poly (dimethylsiloxane) Microfluidic Devices. Society 20(13):5569–5574Google Scholar
  27. 27.
    Moraes C, Wang G, Sun Y, Simmons CA (2010) A microfabricated platform for ­high-throughput unconfined compression of micropatterned biomaterial arrays. Biomaterials 31:577–584, Elsevier LtdCrossRefGoogle Scholar
  28. 28.
    Love JC, Wolfe DB, Jacobs HO, Whitesides GM (2001) Microscope Projection Photolithography for Rapid Prototyping of Masters with Micron-Scale Features for Use in Soft Lithography. Langmuir 17:6005–6012CrossRefGoogle Scholar
  29. 29.
    Hahn MS, Miller JS, West JL (2005) Laser Scanning Lithography for Surface Micropatterning on Hydrogels. Adv Mater 17:2939–2942CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media,LLC 2013

Authors and Affiliations

  1. 1.Department of BioengineeringMS-142, BRC, Rice UniversityHoustonUSA

Personalised recommendations