Advertisement

Innovations in Testing Strategies in Reproductive Toxicology

  • Aldert H. PiersmaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 947)

Abstract

Toxicological hazard assessment currently finds itself at a crossroads where the existing classical test paradigm is challenged by a host of innovative approaches. Animal study protocols are being enhanced for additional parameters and improved for more efficient effect assessment with reduced animal numbers. Whilst existing testing paradigms have generally proven conservative for chemical safety assessment, novel alternative in silico and in vitro approaches and assays are being introduced that begin to elucidate molecular mechanisms of toxicity. Issues such as animal welfare, alternative assay validation, endocrine disruption, and the US-NAS report on toxicity testing in the twenty-first century have provided directionality to these developments. The reductionistic nature of individual alternative assays requires that they be combined in a testing strategy in order to provide a complete picture of the toxicological profile of a compound. One of the challenges of this innovative approach is the combined interpretation of assay results in terms of toxicologically relevant effects. Computational toxicology aims at providing that integration. In order to progress, we need to follow three steps: (1) Learn from past experience in animal studies and human diseases about critical end points and pathways of toxicity. (2) Design alternative assays for essential mechanisms of toxicity. (3) Build an integrative testing strategy tailored to human hazard assessment using a battery of available alternative tests for critical end points that provides optimal in silico and in vitro filters to upgrade toxicological hazard assessment to the mechanistic level.

Key words

Teratogenicity Alternative methods 3 Rs Hazard assessment 

References

  1. 1.
    EU REACH (2011) REACH legislation for registration, evaluation, authorisation and restriction of chemicals. http://ec.europa.eu/environment/chemicals/reach/reach_intro.htm. Accessed 24 Aug 2011
  2. 2.
    OECD (2011) Test guidelines program. http://www.oecd.org/department/0,2688,en_2649_34377_1_1_1_1_1,00.html. Accessed 24 Aug 2011
  3. 3.
    EU GHS (2011) Globally Harmonized System for classification, labeling and packaging of substances and mixtures. http://ec.europa.eu/enterprise/sectors/chemicals/classification/index_en.htm. Accessed 24 Aug 2011
  4. 4.
    Jurewicz J, Hanke W (2008) Prenatal and childhood exposure to pesticides and neurobehavioral development: review of epidemiological studies. Int J Occup Med Environ Health 21(2):121–132PubMedCrossRefGoogle Scholar
  5. 5.
    Mill J, Petronis A (2008) Pre- and peri-natal environmental risks for attention-deficit hyperactivity disorder (ADHD): the potential role of epigenetic processes in mediating susceptibility. J Child Psychol Psychiatry 49(10):1020–1030PubMedCrossRefGoogle Scholar
  6. 6.
    Cooper RL, Lamb JC, Barlow SM et al (2006) A tiered approach to life stages testing for agricultural chemical safety assessment. Crit Rev Toxicol 36(1):69–98PubMedCrossRefGoogle Scholar
  7. 7.
    Timmer A (2003) Environmental influences on inflammatory bowel disease manifestations. Lessons from epidemiology. Dig Dis 21(2):91–104PubMedCrossRefGoogle Scholar
  8. 8.
    Woodruff TJ, Axelrad DA, Kyle AD et al (2004) Trends in environmentally related childhood illnesses. Pediatrics 113(4 Suppl):1133–1140PubMedGoogle Scholar
  9. 9.
    Pearce N, Douwes J (2006) The global epidemiology of asthma in children. Int J Tuberc Lung Dis 10(2):125–132PubMedGoogle Scholar
  10. 10.
    Piersma AH, Rorije E, Beekhuijzen ME et al (2011) Combined retrospective analysis of 498 rat multi-generation reproductive toxicity studies: on the impact of parameters related to F1 mating and F2 offspring. Reprod Toxicol 31(4):392–401PubMedCrossRefGoogle Scholar
  11. 11.
    Rorije E, Muller A, Beekhuijzen MEW et al (2011) On the impact of second generation mating and offspring in multi-generation reproductive toxicity studies on Classification and Labelling of Substances in Europe. Regul Toxicol Pharmacol 61(2):251–260PubMedCrossRefGoogle Scholar
  12. 12.
    Tonk EC, de Groot DM, Penninks AH et al (2010) Developmental immunotoxicity of methylmercury: the relative sensitivity of developmental and immune parameters. Toxicol Sci 117(2):325–335PubMedCrossRefGoogle Scholar
  13. 13.
    Tonk EC, de Groot DM, Penninks AH et al (2011) Developmental immunotoxicity of di-n-octyltin dichloride (DOTC) in an extended one-generation reproductive toxicity study. Toxicol Lett 204(2–3):156–163PubMedCrossRefGoogle Scholar
  14. 14.
    Cappon GD, Bailey GP, Buschmann J et al (2009) Juvenile animal toxicity study designs to support pediatric drug development. Birth Defects Res B Dev Reprod Toxicol 86(6):463–469PubMedCrossRefGoogle Scholar
  15. 15.
    Shimomura K (2011) The value of juvenile animal studies: a Japanese industry perspective. Birth Defects Res B Dev Reprod Toxicol 92(4):266–268PubMedGoogle Scholar
  16. 16.
    New DA (1978) Whole-embryo culture and the study of mammalian embryos during organogenesis. Biol Rev Camb Philos Soc 53(1):81–122PubMedCrossRefGoogle Scholar
  17. 17.
    Agnish ND, Kochhar DM (1976) Direct exposure of mouse embryonic limb-buds to 5-bromodeoxyuridine in vitro and its effect on chondrogenesis: increasing resistance to the analog at successive stages of development. J Embryol Exp Morphol 36(3):639–652PubMedGoogle Scholar
  18. 18.
    Flint OP, Orton TC, Ferguson RA (1984) Differentiation of rat embryo cells in culture: response following acute maternal exposure to teratogens and non-teratogens. J Appl Toxicol 4(2):109–116PubMedCrossRefGoogle Scholar
  19. 19.
    Johnson EM (1980) A subvertebrate system for rapid determination of potential teratogenic hazards. J Environ Pathol Toxicol 4(5–6):153–156PubMedGoogle Scholar
  20. 20.
    Welsch F, Stedman DB, Willis WD et al (1986) Karyotype, growth, and cell cycle analysis of human embryonic palatal mesenchymal cells: relevance to the use of these cells in an in vitro teratogenicity screening assay. Teratog Carcinog Mutagen 6(5):383–392PubMedCrossRefGoogle Scholar
  21. 21.
    Steele VE, Morrissey RE, Elmore EL et al (1988) Evaluation of two in vitro assays to screen for potential developmental toxicants. Fundam Appl Toxicol 11(4):673–684PubMedCrossRefGoogle Scholar
  22. 22.
    Mummery CL, van den Brink CE, van der Saag PT et al (1984) A short-term screening test for teratogens using differentiating neuroblastoma cells in vitro. Teratology 29(2):271–279PubMedCrossRefGoogle Scholar
  23. 23.
    Piersma AH, Haakmat AS, Hagenaars AM (1993) In vitro assays for the developmental toxicity of xenobiotic compounds using differentiating embryonal carcinoma cells in culture. Toxicol In Vitro 7:615–621PubMedCrossRefGoogle Scholar
  24. 24.
    Piersma AH (2006) Alternative methods for developmental toxicity testing. Basic Clin Pharmacol Toxicol 98(5):427–431PubMedCrossRefGoogle Scholar
  25. 25.
    Brown NA (1987) Teratogenicity testing in vitro: status of validation studies. Arch Toxicol Suppl 11:105–114PubMedGoogle Scholar
  26. 26.
    Genschow E, Spielmann H, Scholz G et al (2002) The ECVAM international validation study on in vitro embryotoxicity tests: results of the definitive phase and evaluation of prediction models. European Centre for the Validation of Alternative Methods. Altern Lab Anim 30(2):151–176PubMedGoogle Scholar
  27. 27.
    Marx-Stoelting P, Adriaens E, Ahr HJ et al (2009) A review of the implementation of the embryonic stem cell test (EST). The report and recommendations of an ECVAM/ReProTect Workshop. Altern Lab Anim 37(3):313–328PubMedGoogle Scholar
  28. 28.
    Robinson JF, Theunissen PT, van Dartel DA et al (2011) Comparison of MeHg-induced toxicogenomic responses across in vivo and in vitro models used in developmental toxicology. Reprod Toxicol 32(2):180–188PubMedCrossRefGoogle Scholar
  29. 29.
    Bain G, Ray WJ, Yao M et al (1996) Retinoic acid promotes neural and represses mesodermal gene expression in mouse embryonic stem cells in culture. Biochem Biophys Res Commun 223(3):691–694PubMedCrossRefGoogle Scholar
  30. 30.
    Okabe S, Forsberg-Nilsson K, Spiro AC et al (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59(1):89–102PubMedCrossRefGoogle Scholar
  31. 31.
    Theunissen PT, Schulpen SH, van Dartel DA et al (2010) An abbreviated protocol for multilineage neural differentiation of murine embryonic stem cells and its perturbation by methyl mercury. Reprod Toxicol 29(4):383–392PubMedCrossRefGoogle Scholar
  32. 32.
    Zur Nieden NI, Kempka G, Ahr HJ (2003) In vitro differentiation of embryonic stem cells into mineralized osteoblasts. Differentiation 71(1):18–27PubMedCrossRefGoogle Scholar
  33. 33.
    Dani C, Smith AG, Dessolin S et al (1997) Differentiation of embryonic stem cells into adipocytes in vitro. J Cell Sci 110:1279–1285PubMedGoogle Scholar
  34. 34.
    Hamazaki T, Iiboshi Y, Oka M et al (2001) Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett 497(1):15–19PubMedCrossRefGoogle Scholar
  35. 35.
    van Dartel DA, Piersma AH (2011) The embryonic stem cell test combined with toxicogenomics as an alternative testing model for the assessment of developmental toxicity. Reprod Toxicol 32(2):235–244PubMedCrossRefGoogle Scholar
  36. 36.
    Stummann TC, Hareng L, Bremer S (2009) Hazard assessment of methylmercury toxicity to neuronal induction in embryogenesis using human embryonic stem cells. Toxicology 257(3):117–126PubMedCrossRefGoogle Scholar
  37. 37.
    Knudsen TB, Martin MT, Kavlock RJ et al (2009) Profiling the activity of environmental chemicals in prenatal developmental toxicity studies using the U.S. EPA’s ToxRefDB. Reprod Toxicol 28(2):209–219PubMedCrossRefGoogle Scholar
  38. 38.
    Reif DM, Martin MT, Tan SW et al (2010) Endocrine profiling and prioritization of environmental chemicals using ToxCast data. Environ Health Perspect 118(12):1714–1720PubMedCrossRefGoogle Scholar
  39. 39.
    Scholz S, Fischer S, Gündel U et al (2008) The zebrafish embryo model in environmental risk assessment—applications beyond acute toxicity testing. Environ Sci Pollut Res Int 15(5):394–404PubMedCrossRefGoogle Scholar
  40. 40.
    Hermsen SA, van den Brandhof EJ, van der Ven LT et al (2011) Relative embryotoxicity of two classes of chemicals in a modified zebrafish embryotoxicity test and comparison with their in vivo potencies. Toxicol In Vitro 25(3):745–753PubMedCrossRefGoogle Scholar
  41. 41.
    US-NAS (2007) Toxicity testing in the 21st century: a vision and a strategy. National Academies Press, Washington DCGoogle Scholar
  42. 42.
    EC (1996) Report of proceedings of European workshop on the impact of endocrine disruptors on human health and wildlife, Weybridge, UK. http://ec.europa.eu/environment/endocrine/documents/reports_en.htm. Accessed 24 Aug 2011
  43. 43.
    Hengstler JG, Foth H, Gebel T et al (2011) Critical evaluation of key evidence on the human health hazards of exposure to bisphenol A. Crit Rev Toxicol 41(4):263–291PubMedCrossRefGoogle Scholar
  44. 44.
    Tyl RW, Marr MC, Brown SS et al (2010) Validation of the intact rat weanling uterotrophic assay with notes on the formulation and analysis of the positive control chemical in vehicle. J Appl Toxicol 30(7):694–698PubMedCrossRefGoogle Scholar
  45. 45.
    Freyberger A, Schladt L (2009) Evaluation of the rodent Hershberger bioassay on intact juvenile males—testing of coded chemicals and supplementary biochemical investigations. Toxicology 262(2):114–120PubMedCrossRefGoogle Scholar
  46. 46.
    van Dartel DA, Pennings JL, de la Fonteyne LJ et al (2011) Concentration-dependent gene expression responses to flusilazole in embryonic stem cell differentiation cultures. Toxicol Appl Pharmacol 251(2):110–118PubMedCrossRefGoogle Scholar
  47. 47.
    Paquette JA, Kumpf SW, Streck RD et al (2008) Assessment of the embryonic stem cell test and application and use in the pharmaceutical industry. Birth Defects Res B Dev Reprod Toxicol 83(2):104–111PubMedCrossRefGoogle Scholar
  48. 48.
    Hartung T, Bremer S, Casati S et al (2004) A modular approach to the ECVAM principles on test validity. Altern Lab Anim 32(5):467–472PubMedGoogle Scholar
  49. 49.
    Kistler A (1987) Limb bud cell cultures for estimating the teratogenic potential of compounds. Validation of the test system with retinoids. Arch Toxicol 60(6):403–414PubMedCrossRefGoogle Scholar
  50. 50.
    Louisse J, de Jong E, van de Sandt JJ et al (2010) The use of in vitro toxicity data and physiologically based kinetic modeling to predict dose-response curves for in vivo developmental toxicity of glycol ethers in rat and man. Toxicol Sci 118(2):470–484PubMedCrossRefGoogle Scholar
  51. 51.
    Daston GP, Chapin RE, Scialli AR et al (2010) A different approach to validating screening assays for developmental toxicity. Birth Defects Res B Dev Reprod Toxicol 89(6):526–530PubMedCrossRefGoogle Scholar
  52. 52.
    Janer G, Hakkert BC, Piersma AH et al (2007) A retrospective analysis of the added value of the rat two-generation reproductive toxicity study versus the rat subchronic toxicity study. Reprod Toxicol 24(1):103–113PubMedCrossRefGoogle Scholar
  53. 53.
    Janer G, Slob W, Hakkert BC et al (2008) A retrospective analysis of developmental toxicity studies in rat and rabbit: what is the added value of the rabbit as an additional test species? Regul Toxicol Pharmacol 50(2):206–217PubMedCrossRefGoogle Scholar
  54. 54.
    Pennings JL, van Dartel DA, Robinson JF et al (2011) Gene set assembly for quantitative prediction of developmental toxicity in the embryonic stem cell test. Toxicology 284(1–3):63–71PubMedCrossRefGoogle Scholar
  55. 55.
    Toda S, Aoki S, Suzuki K et al (2003) Thyrocytes, but not C cells, actively undergo growth and folliculogenesis at the periphery of thyroid tissue fragments in three-dimensional collagen gel culture. Cell Tissue Res 312(3):281–289PubMedCrossRefGoogle Scholar
  56. 56.
    OECD (2002) Conceptual framework for testing and assessment of potential endocrine disruptors. http://www.oecd.org/document/58/0,3343,en_2649_34377_2348794_1_1_1_1,00.html. Accessed 24 Aug 2011
  57. 57.
    Martin MT, Knudsen TB, Reif DM et al (2011) Predictive model of rat reproductive toxicity from ToxCast high throughput screening. Biol Reprod 85(2):327–339PubMedCrossRefGoogle Scholar
  58. 58.
    Schenk B, Weimer M, Bremer S et al (2010) The ReProTect Feasibility Study, a novel comprehensive in vitro approach to detect reproductive toxicants. Reprod Toxicol 30(1):200–218PubMedCrossRefGoogle Scholar
  59. 59.
    van der Burg B, Kroese ED, Piersma AH (2011) Towards a pragmatic alternative testing strategy for the detection of reproductive toxicants. Reprod Toxicol 31(4):558–561PubMedCrossRefGoogle Scholar
  60. 60.
    Kavlock R, Dix D (2010) Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk. J Toxicol Environ Health B Crit Rev 13(2–4):197–217PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Laboratory for Health Protection Research–National Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands

Personalised recommendations