Advertisement

Ex Vivo Differentiation of Cord Blood Stem Cells into Megakaryocytes and Platelets

  • Nicolas Pineault
  • Amélie Robert
  • Valérie Cortin
  • Lucie Boyer
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 946)

Abstract

Megakaryocytes (MK) are hematopoietic cells present in the bone marrow that are responsible for the production and release of platelets in the circulation. Given their very low frequency (<1%), human MK often need to be derived in culture to study their development or to generate sufficient material for biological studies. This chapter describes a simplified 14-day culture protocol that efficiently leads to the production of MK and platelets from cord blood enriched progenitor cells. A serum-free medium is suggested for the growth of the CB cells together with an optimized cytokine cocktail developed specifically for MK differentiation, expansion, and maturation. Methodologies for flow cytometry analysis, MK and platelets estimation, and MK progenitor assay are also presented.

Key words

Megakaryocytes Platelets Hematopoietic stem cells Cord blood Flow cytometry Ploidy analysis 

Notes

Acknowledgments

This work was supported in part by a National Blood Foundation Grant. A. Robert was the recipient of an Industrial R&D Fellowships from the Canadian Natural Science and Engineering Research Council.

References

  1. 1.
    Pang L, Weiss MJ, Poncz M (2005) Megakaryocyte biology and related disorders. J Clin Invest 115:3332–3338PubMedCrossRefGoogle Scholar
  2. 2.
    Dolzhanskiy A, Basch RS, Karpatkin S (1997) The development of human megakaryocytes: III. Development of mature megakaryocytes from highly purified committed progenitors in synthetic culture media and inhibition of thrombopoietin-induced polyploidization by interleukin-3. Blood 89:426–434PubMedGoogle Scholar
  3. 3.
    Cortin V, Garnier A, Pineault N, Lemieux R, Boyer L, Proulx C (2005) Efficient in vitro megakaryocyte maturation using cytokine cocktails optimized by statistical experimental design. Exp Hematol 33:1182–1191PubMedCrossRefGoogle Scholar
  4. 4.
    van den Oudenrijn S, von dem Borne AE, de Haas M (2000) Differences in megakaryocyte expansion potential between CD34(+) stem cells derived from cord blood, peripheral blood, and bone marrow from adults and children. Exp Hematol 28:1054–1061PubMedCrossRefGoogle Scholar
  5. 5.
    Schattner M, Lefebvre P, Mingolelli SS, Goolsby CL, Rademaker A, White JG, Foster D, Green D, Cohen I (1996) Thrombopoietin-stimulated ex vivo expansion of human bone marrow megakaryocytes. Stem Cells 14:207–214PubMedCrossRefGoogle Scholar
  6. 6.
    Proulx C, Boyer L, Hurnanen DR, Lemieux R (2003) Preferential ex vivo expansion of megakaryocytes from human cord blood CD34+-enriched cells in the presence of thrombopoietin and limiting amounts of stem cell factor and Flt-3 ligand. J Hematother Stem Cell Res 12:179–188PubMedCrossRefGoogle Scholar
  7. 7.
    Williams JL, Pipia GG, Datta NS, Long MW (1998) Thrombopoietin requires additional megakaryocyte-active cytokines for optimal ex vivo expansion of megakaryocyte precursor cells. Blood 91:4118–4126PubMedGoogle Scholar
  8. 8.
    Fujiki H, Kimura T, Minamiguchi H, Harada S, Wang J, Nakao M, Yokota S, Urata Y, Ueda Y, Yamagishi H, Sonoda Y (2002) Role of human interleukin-9 as a megakaryocyte potentiator in culture. Exp Hematol 30:1373–1380PubMedCrossRefGoogle Scholar
  9. 9.
    De Bruyn C, Delforge A, Martiat P, Bron D (2005) Ex vivo expansion of megakaryocyte progenitor cells: cord blood versus mobilized peripheral blood. Stem Cells Dev 14:415–424PubMedCrossRefGoogle Scholar
  10. 10.
    Feng Y, Zhang L, Xiao ZJ, Li B, Liu B, Fan CG, Yuan XF, Han ZC (2005) An effective and simple expansion system for megakaryocyte progenitor cells using a combination of heparin with thrombopoietin and interleukin-11. Exp Hematol 33:1537–1543PubMedCrossRefGoogle Scholar
  11. 11.
    Matsunaga T, Tanaka I, Kobune M, Kawano Y, Tanaka M, Kuribayashi K, Iyama S, Sato T, Sato Y, Takimoto R, Takayama T, Kato J, Ninomiya T, Hamada H, Niitsu Y (2006) Ex vivo large-scale generation of human platelets from cord blood CD34+ cells. Stem Cells 24:2877–2887PubMedCrossRefGoogle Scholar
  12. 12.
    Shaw PH, Gilligan D, Wang XM, Thall PF, Corey SJ (2003) Ex vivo expansion of megakaryocyte precursors from umbilical cord blood CD34 cells in a closed liquid culture system. Biol Blood Marrow Transplant 9:151–156PubMedCrossRefGoogle Scholar
  13. 13.
    Sigurjonsson OE, Gudmundsson KO, Haraldsdottir V, Rafnar T, Agnarsson BA, Gudmundsson S (2004) Flt3/Flk-2 ligand in combination with thrombopoietin decreases apoptosis in megakaryocyte development. Stem Cells Dev 13:183–191PubMedCrossRefGoogle Scholar
  14. 14.
    Boyer L, Robert A, Proulx C, Pineault N (2008) Increased production of megakaryocytes near purity from cord blood CD34+ cells using a short two-phase culture system. J Immunol Methods 332:82–91PubMedCrossRefGoogle Scholar
  15. 15.
    Blair A, Baker CL, Pamphilon DH, Judson PA (2002) Ex vivo expansion of megakaryocyte progenitor cells from normal bone marrow and peripheral blood and from patients with haematological malignancies. Br J Haematol 116:912–919PubMedCrossRefGoogle Scholar
  16. 16.
    Choi ES, Hokom MM, Nichol JL, Hornkohl A, Hunt P (1995) Functional human platelet generation in vitro and regulation of cytoplasmic process formation. C R Acad Sci III 318:387–393PubMedGoogle Scholar
  17. 17.
    Ungerer M, Peluso M, Gillitzer A, Massberg S, Heinzmann U, Schulz C, Munch G, Gawaz M (2004) Generation of functional culture-derived platelets from CD34+ progenitor cells to study transgenes in the platelet environment. Circ Res 95:e36–e44PubMedCrossRefGoogle Scholar
  18. 18.
    Lefebvre P, Winter JN, Meng Y, Cohen I (2000) Ex vivo expansion of early and late megakaryocyte progenitors. J Hematother Stem Cell Res 9:913–921PubMedCrossRefGoogle Scholar
  19. 19.
    Sullenbarger B, Bahng JH, Gruner R, Kotov N, Lasky LC (2009) Prolonged continuous in vitro human platelet production using three-dimensional scaffolds. Exp Hematol 37:101–110PubMedCrossRefGoogle Scholar
  20. 20.
    Gandhi MJ, Drachman JG, Reems JA, Thorning D, Lannutti BJ (2005) A novel strategy for generating platelet-like fragments from megakaryocytic cell lines and human progenitor cells. Blood Cells Mol Dis 35:70–73PubMedCrossRefGoogle Scholar
  21. 21.
    Case J, Hicks C, Trickett A, Kwan YL, Manoharan A (2006) The expansion of megakaryocyte progenitors from CD34+-enriched mobilized peripheral blood stem cells is inhibited by Flt3-L. J Interferon Cytokine Res 26:76–82PubMedCrossRefGoogle Scholar
  22. 22.
    Shaw PH, Olszewski M, Kletzel M (2001) Expansion of megakaryocyte precursors and stem cells from umbilical cord blood CD34+ cells in collagen and liquid culture media. J Hematother Stem Cell Res 10:391–403PubMedCrossRefGoogle Scholar
  23. 23.
    Nishikii H, Eto K, Tamura N, Hattori K, Heissig B, Kanaji T, Sawaguchi A, Goto S, Ware J, Nakauchi H (2008) Metalloproteinase regulation improves in vitro generation of efficacious platelets from mouse embryonic stem cells. J Exp Med 205:1917–1927PubMedCrossRefGoogle Scholar
  24. 24.
    Reems JA, Pineault N, Sun S (2010) In vitro megakaryocyte production and platelet biogenesis: state of the art. Transfus Med Rev 24:33–43PubMedCrossRefGoogle Scholar
  25. 25.
    Battinelli EM, Hartwig JH, Italiano JE Jr (2007) Delivering new insight into the biology of megakaryopoiesis and thrombopoiesis. Curr Opin Hematol 14:419–426PubMedCrossRefGoogle Scholar
  26. 26.
    Bluteau D, Lordier L, Di Stefano A, Chang Y, Raslova H, Debili N, Vainchenker W (2009) Regulation of megakaryocyte maturation and platelet formation. J Thromb Haemost 7(Suppl 1):227–234PubMedCrossRefGoogle Scholar
  27. 27.
    Junt T, Schulze H, Chen Z, Massberg S, Goerge T, Krueger A, Wagner DD, Graf T, Italiano JE Jr, Shivdasani RA, von Andrian UH (2007) Dynamic visualization of thrombopoiesis within bone marrow. Science 317:1767–1770PubMedCrossRefGoogle Scholar
  28. 28.
    Lordier L, Jalil A, Aurade F, Larbret F, Larghero J, Debili N, Vainchenker W, Chang Y (2008) Megakaryocyte endomitosis is a failure of late cytokinesis related to defects in the contractile ring and Rho/Rock signaling. Blood 112:3164–3174PubMedCrossRefGoogle Scholar
  29. 29.
    Schulze H, Korpal M, Hurov J, Kim SW, Zhang J, Cantley LC, Graf T, Shivdasani RA (2006) Characterization of the megakaryocyte demarcation membrane system and its role in thrombopoiesis. Blood 107:3868–3875PubMedCrossRefGoogle Scholar
  30. 30.
    Italiano JE Jr, Lecine P, Shivdasani RA, Hartwig JH (1999) Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol 147:1299–1312PubMedCrossRefGoogle Scholar
  31. 31.
    Robert A, Boyer L, Pineault N (2011) Glycoprotein Ibα receptor instability is associated with loss of quality in platelets produced in culture. Stem Cells Dev 20:379–390PubMedCrossRefGoogle Scholar
  32. 32.
    Cortin V, Pineault N, Garnier A (2009) Ex vivo megakaryocyte expansion and platelet production from human cord blood stem cells. Methods Mol Biol 482:109–126PubMedCrossRefGoogle Scholar
  33. 33.
    Darzynkiewick Z, Huang X (2004) In: Collingan JE, Kruisbeek AM, Margulies DH, Shevach EM, Strober W (eds) Current protocols in immunology. Wiley, New York, pp 5.7.1–5.7.18Google Scholar
  34. 34.
    Bornstein R, Garcia-Vela J, Gilsanz F, Auray C, Cales C (2001) Cord blood megakaryocytes do not complete maturation, as indicated by impaired establishment of endomitosis and low expression of G1/S cyclins upon thrombopoietin-induced differentiation. Br J Haematol 114:458–465PubMedCrossRefGoogle Scholar
  35. 35.
    Mattia G, Vulcano F, Milazzo L, Barca A, Macioce G, Giampaolo A, Hassan HJ (2002) Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34+ cells are correlated with different levels of platelet release. Blood 99:888–897PubMedCrossRefGoogle Scholar
  36. 36.
    Proulx C, Dupuis N, St-Amour I, Boyer L, Lemieux R (2004) Increased megakaryopoiesis in cultures of CD34-enriched cord blood cells maintained at 39 degrees C. Biotechnol Bioeng 88:675–680PubMedCrossRefGoogle Scholar
  37. 37.
    Pineault N, Boucher J-F, Cayer M-P, Palmqvist L, Boyer L, Lemieux R, Proulx C (2008) Characterization of the effects and potential mechanisms leading to increased megakaryocytic differentiation under mild hyperthermia. Stem Cells Dev 17:483–494PubMedCrossRefGoogle Scholar
  38. 38.
    Bergmeier W, Burger PC, Piffath CL, Hoffmeister KM, Hartwig JH, Nieswandt B, Wagner DD (2003) Metalloproteinase inhibitors improve the recovery and hemostatic function of in vitro-aged or -injured mouse platelets. Blood 102:4229–4235PubMedCrossRefGoogle Scholar
  39. 39.
    Muntean AG, Pang L, Poncz M, Dowdy SF, Blobel GA, Crispino JD (2007) Cyclin D-Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization. Blood 109:5199–5207PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Nicolas Pineault
    • 1
  • Amélie Robert
    • 2
  • Valérie Cortin
    • 2
  • Lucie Boyer
    • 2
  1. 1.Département de Recherche et DéveloppementHéma-Québec, Université LavalQuébec CityCanada
  2. 2.Département de Recherche et DéveloppementHéma-QuébecQuébec CityCanada

Personalised recommendations