siRNA Design pp 315-346 | Cite as

Design of RNAi Reagents for Invertebrate Model Organisms and Human Disease Vectors

  • Thomas Horn
  • Michael Boutros
Part of the Methods in Molecular Biology book series (MIMB, volume 942)


RNAi has become a very versatile tool to silence gene expression in a variety of organisms, in particular when classical genetic methods are missing. However, the application of this method in functional studies has raised new challenges in order to design RNAi reagents that minimize false positives and false negatives. Because the performance of reagents cannot be validated on a genome-wide scale, improved computational methods are required that consider experimentally derived quality measures. In this chapter, we describe computational methods for the design of RNAi reagents for invertebrate model organisms and human disease vectors, such as Anopheles. We describe procedures for designing short and long double-stranded RNAs for single genes, and evaluate their predicted specificity and efficiency. Using a bioinformatics pipeline we also describe how to design a genome-wide RNAi library for Anopheles gambiae.

Key words

RNAi Invertebrates Double-stranded RNA Drosophila Anopheles High-throughput screening 


  1. 1.
    Jorgensen EM, Mango SE (2002) The art and design of genetic screens: caenorhabditis elegans. Nat Rev Genet 3:356–369CrossRefGoogle Scholar
  2. 2.
    St Johnston D (2002) The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet 3:176–188CrossRefGoogle Scholar
  3. 3.
    Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–896CrossRefGoogle Scholar
  4. 4.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811CrossRefGoogle Scholar
  5. 5.
    Boutros M, Ahringer J (2008) The art and design of genetic screens: RNA interference. Nat Rev Genet 9:554–566CrossRefGoogle Scholar
  6. 6.
    van der Krol AR, Mur LA, Beld M, Mol JN, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. The Plant cell 2:291–299Google Scholar
  7. 7.
    van der Krol AR, Mur LA, de Lange P, Mol JN, Stuitje AR (1990) Inhibition of flower pigmentation by antisense CHS genes: promoter and minimal sequence requirements for the antisense effect. Plant Mol Biol 14:457–466CrossRefGoogle Scholar
  8. 8.
    Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289Google Scholar
  9. 9.
    Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33CrossRefGoogle Scholar
  10. 10.
    Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366CrossRefGoogle Scholar
  11. 11.
    Bernstein SL, Guo Y, Kelman SE, Flower RW, Johnson MA (2003) Functional and cellular responses in a novel rodent model of anterior ischemic optic neuropathy. Investig Ophthalmol Vis Sci 44:4153–4162CrossRefGoogle Scholar
  12. 12.
    Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296CrossRefGoogle Scholar
  13. 13.
    Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654–2659CrossRefGoogle Scholar
  14. 14.
    Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–574CrossRefGoogle Scholar
  15. 15.
    Chiu YL, Rana TM (2002) RNAi in human cells: basic structural and functional features of small interfering RNA. Mol Cell 10:549–561CrossRefGoogle Scholar
  16. 16.
    Chiu YL, Rana TM (2003) siRNA function in RNAi: a chemical modification analysis. RNA (New York, NY) 9:1034–1048.Google Scholar
  17. 17.
    Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216CrossRefGoogle Scholar
  18. 18.
    Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330CrossRefGoogle Scholar
  19. 19.
    Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208CrossRefGoogle Scholar
  20. 20.
    Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, Ueda R, Saigo K (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32:936–948CrossRefGoogle Scholar
  21. 21.
    Liu Q, Paroo Z (2010) Biochemical principles of small RNA pathways. Annu Rev Biochem 79:295–319CrossRefGoogle Scholar
  22. 22.
    Fischer JA, Giniger E, Maniatis T, Ptashne M (1988) GAL4 activates transcription in Drosophila. Nature 332:853–856CrossRefGoogle Scholar
  23. 23.
    Clemens JC, Worby CA, Simonson-Leff N, Muda M, Maehama T, Hemmings BA, Dixon JE (2000) Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci U S A 97:6499–6503CrossRefGoogle Scholar
  24. 24.
    Ulvila J, Parikka M, Kleino A, Sormunen R, Ezekowitz RA, Kocks C, Ramet M (2006) Double-stranded RNA is internalized by scavenger receptor-mediated endocytosis in Drosophila S2 cells. J Biol Chem 281:14370–14375CrossRefGoogle Scholar
  25. 25.
    Saleh MC, van Rij RP, Hekele A, Gillis A, Foley E, O’Farrell PH, Andino R (2006) The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat Cell Biol 8:793–802CrossRefGoogle Scholar
  26. 26.
    Ni JQ, Zhou R, Czech B, Liu LP, Holderbaum L, Yang-Zhou D, Shim HS, Tao R, Handler D, Karpowicz P, Binari R, Booker M, Brennecke J, Perkins LA, Hannon GJ, Perrimon N (2011) A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat Methods 8:405–407CrossRefGoogle Scholar
  27. 27.
    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498CrossRefGoogle Scholar
  28. 28.
    Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5:834–839CrossRefGoogle Scholar
  29. 29.
    Bernards R, Brummelkamp TR, Beijersbergen RL (2006) shRNA libraries and their use in cancer genetics. Nat Methods 3:701–706CrossRefGoogle Scholar
  30. 30.
    Chang K, Elledge SJ, Hannon GJ (2006) Lessons from Nature: microRNA-based shRNA libraries. Nat Methods 3:707–714CrossRefGoogle Scholar
  31. 31.
    Root DE, Hacohen N, Hahn WC, Lander ES, Sabatini DM (2006) Genome-scale loss-of-function screening with a lentiviral RNAi library. Nat Methods 3:715–719CrossRefGoogle Scholar
  32. 32.
    Buchholz F, Kittler R, Slabicki M, Theis M (2006) Enzymatically prepared RNAi libraries. Nat Methods 3:696–700CrossRefGoogle Scholar
  33. 33.
    Fuchs F, Boutros M (2006) Cellular phenotyping by RNAi. Brief Funct Genomics Proteomics 5:52–56CrossRefGoogle Scholar
  34. 34.
    Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S, Couto A, Marra V, Keleman K, Dickson BJ (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156CrossRefGoogle Scholar
  35. 35.
    Echeverri CJ, Beachy PA, Baum B, Boutros M, Buchholz F, Chanda SK, Downward J, Ellenberg J, Fraser AG, Hacohen N, Hahn WC, Jackson AL, Kiger A, Linsley PS, Lum L, Ma Y, Mathey-Prevot B, Root DE, Sabatini DM, Taipale J, Perrimon N, Bernards R (2006) Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods 3:777–779CrossRefGoogle Scholar
  36. 36.
    Perrimon N, Mathey-Prevot B (2007) Off Targets and Genome Scale RNAi Screens in Drosophila. Fly 1:5Google Scholar
  37. 37.
    Amarzguioui M, Prydz H (2004) An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun 316:1050–1058CrossRefGoogle Scholar
  38. 38.
    Shah JK, Garner HR, White MA, Shames DS, Minna JD (2007) sIR: siRNA information resource, a web-based tool for siRNA sequence design and analysis and an open access siRNA database. BMC Bioinformatics 8:178CrossRefGoogle Scholar
  39. 39.
    Horn T, Boutros M (2010) E-RNAi: a web application for the multi-species design of RNAi reagents–2010 update. Nucleic Acids Res 38:W332–339CrossRefGoogle Scholar
  40. 40.
    Horn T, Sandmann T, Boutros M (2010) Design and evaluation of genome-wide libraries for RNA interference screens. Genome Biol 11:R61CrossRefGoogle Scholar
  41. 41.
    Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25CrossRefGoogle Scholar
  42. 42.
    Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386Google Scholar
  43. 43.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410Google Scholar
  44. 44.
    Kent WJ (2002) BLAT–the BLAST-like alignment tool. Genome Res 12:656–664Google Scholar
  45. 45.
    Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431CrossRefGoogle Scholar
  46. 46.
    Pruitt KD, Tatusova T, Klimke W, Maglott DR (2009) NCBI reference sequences: current status, policy and new initiatives. Nucleic Acids Res 37:D32–36CrossRefGoogle Scholar
  47. 47.
    Flicek P, Aken BL, Ballester B, Beal K, Bragin E, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S, Fernandez-Banet J, Gordon L, Graf S, Haider S, Hammond M, Howe K, Jenkinson A, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Koscielny G, Kulesha E, Lawson D, Longden I, Massingham T, McLaren W, Megy K, Overduin B, Pritchard B, Rios D, Ruffier M, Schuster M, Slater G, Smedley D, Spudich G, Tang YA, Trevanion S, Vilella A, Vogel J, White S, Wilder SP, Zadissa A, Birney E, Cunningham F, Dunham I, Durbin R, Fernandez-Suarez XM, Herrero J, Hubbard TJ, Parker A, Proctor G, Smith J, Searle SM (2010) Ensembl’s 10th year. Nucleic Acids Res 38:D557–562CrossRefGoogle Scholar
  48. 48.
    Tweedie S, Ashburner M, Falls K, Leyland P, McQuilton P, Marygold S, Millburn G, Osumi-Sutherland D, Schroeder A, Seal R, Zhang H (2009) FlyBase: enhancing Drosophila gene ontology annotations. Nucleic Acids Res 37:D555–559CrossRefGoogle Scholar
  49. 49.
    Kim HS, Murphy T, Xia J, Caragea D, Park Y, Beeman RW, Lorenzen MD, Butcher S, Manak JR, Brown SJ (2010) BeetleBase in 2010: revisions to provide comprehensive genomic information for Tribolium casttaneum. Nucleic Acids Res 38:D437–442CrossRefGoogle Scholar
  50. 50.
    Harris TW, Antoshechkin I, Bieri T, Blasiar D, Chan J, Chen WJ, De La Cruz N, Davis P, Duesbury M, Fang R, Fernandes J, Han M, Kishore R, Lee R, Muller HM, Nakamura C, Ozersky P, Petcherski A, Rangarajan A, Rogers A, Schindelman G, Schwarz EM, Tuli MA, Van Auken K, Wang D, Wang X, Williams G, Yook K, Durbin R, Stein LD, Spieth J, Sternberg PW (2010) WormBase: a comprehensive resource for nematode research. Nucleic Acids Res 38:D463–467CrossRefGoogle Scholar
  51. 51.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63CrossRefGoogle Scholar
  52. 52.
    Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46CrossRefGoogle Scholar
  53. 53.
    Legeai F, Shigenobu S, Gauthier JP, Colbourne J, Rispe C, Collin O, Richards S, Wilson AC, Murphy T, Tagu D (2010) AphidBase: a centralized bioinformatic resource for annotation of the pea aphid genome. Insect Mol Biol 19(Suppl 2):5–12CrossRefGoogle Scholar
  54. 54.
    Mutti NS, Park Y, Reese JC, Reeck GR (2006) RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J Insect Sci 6:1–7CrossRefGoogle Scholar
  55. 55.
    Jaubert-Possamai S, Le Trionnaire G, Bonhomme J, Christophides GK, Rispe C, Tagu D (2007) Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum. BMC Biotechnol 7:63CrossRefGoogle Scholar
  56. 56.
    Munoz-Torres MC, Reese JT, Childers CP, Bennett AK, Sundaram JP, Childs KL, Anzola JM, Milshina N, Elsik CG (2011) Hymenoptera genome database: integrated community resources for insect species of the order Hymenoptera. Nucleic Acids Res 39:D658–662CrossRefGoogle Scholar
  57. 57.
    Jarosch A, Moritz RF (2011) Systemic RNA-interference in the honeybee Apis mellifera: tissue dependent uptake of fluorescent siRNA after intra-abdominal application observed by laser-scanning microscopy. J Insect Physiol 57:851–857CrossRefGoogle Scholar
  58. 58.
    Dearden PK, Duncan EJ, Wilson MJ (2009) RNA interference (RNAi) in honeybee (Apis mellifera) embryos, Cold Spring Harb Protoc 6:1–3Google Scholar
  59. 59.
    Lee JA, Kim HK, Kim KH, Han JH, Lee YS, Lim CS, Chang DJ, Kubo T, Kaang BK (2001) Overexpression of and RNA interference with the CCAAT enhancer-binding protein on long-term facilitation of Aplysia sensory to motor synapses. Learn Mem 8:220–226CrossRefGoogle Scholar
  60. 60.
    Duan J, Li R, Cheng D, Fan W, Zha X, Cheng T, Wu Y, Wang J, Mita K, Xiang Z, Xia Q (2010) SilkDB v2.0: a platform for silkworm (Bombyx mori ) genome biology. Nucleic Acids Res 38:D453–456CrossRefGoogle Scholar
  61. 61.
    Masumoto M, Yaginuma T, Niimi T (2009) Functional analysis of Ultrabithorax in the silkworm, Bombyx mori, using RNAi. Dev Genes Evol 219:437–444CrossRefGoogle Scholar
  62. 62.
    Song C, Gallup JM, Day TA, Bartholomay LC, Kimber MJ (2010) Development of an in vivo RNAi protocol to investigate gene function in the filarial nematode, Brugia malayi. PLoS Pathog 6:e1001239CrossRefGoogle Scholar
  63. 63.
    Maine EM (2008) Studying gene function in Caenorhabditis elegans using RNA-mediated interference. Brief Funct Genomics Proteomics 7:184–194CrossRefGoogle Scholar
  64. 64.
    Nishiyama A, Fujiwara S (2008) RNA interference by expressing short hairpin RNA in the Ciona intestinalis embryo. Dev Growth Differ 50:521–529CrossRefGoogle Scholar
  65. 65.
    Neumuller RA, Perrimon N (2011) Where gene discovery turns into systems biology: genome-scale RNAi screens in Drosophila. Wiley Interdiscip Rev Syst Biol Med 3:471–478CrossRefGoogle Scholar
  66. 66.
    Lohmann JU, Endl I, Bosch TC (1999) Silencing of developmental genes in Hydra. Dev Biol 214:211–214CrossRefGoogle Scholar
  67. 67.
    Galliot B, Miljkovic-Licina M, Ghila L, Chera S (2007) RNAi gene silencing affects cell and developmental plasticity in hydra. C R Biol 330:491–497CrossRefGoogle Scholar
  68. 68.
    Lawson D, Arensburger P, Atkinson P, Besansky NJ, Bruggner RV, Butler R, Campbell KS, Christophides GK, Christley S, Dialynas E, Hammond M, Hill CA, Konopinski N, Lobo NF, MacCallum RM, Madey G, Megy K, Meyer J, Redmond S, Severson DW, Stinson EO, Topalis P, Birney E, Gelbart WM, Kafatos FC, Louis C, Collins FH (2009) VectorBase: a data resource for invertebrate vector genomics. Nucleic Acids Res 37:D583–587CrossRefGoogle Scholar
  69. 69.
    Levashina EA, Moita LF, Blandin S, Vriend G, Lagueux M, Kafatos FC (2001) Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104:709–718CrossRefGoogle Scholar
  70. 70.
    Eleftherianos I, Millichap PJ, ffrench-Constant RH, Reynolds SE (2006) RNAi suppression of recognition protein mediated immune responses in the tobacco hornworm Manduca sexta causes increased susceptibility to the insect pathogen Photorhabdus. Dev Comp Immunol 30:1099–1107Google Scholar
  71. 71.
    Werren JH, Loehlin DW, Giebel JD (2009) Larval RNAi in Nasonia (parasitoid wasp), Cold Spring Harb Protoc 10:1358–1361Google Scholar
  72. 72.
    Sullivan JC, Reitzel AM, Finnerty JR (2008) Upgrades to StellaBase facilitate medical and genetic studies on the starlet sea anemone, Nematostella vectensis. Nucleic Acids Res 36:D607–611CrossRefGoogle Scholar
  73. 73.
    Pankow S, Bamberger C (2007) The p53 tumor suppressor-like protein nvp63 mediates selective germ cell death in the sea anemone Nematostella vectensis. PLoS One 2:e782CrossRefGoogle Scholar
  74. 74.
    Rehm EJ, Hannibal RL, Chaw RC, Vargas-Vila MA, Patel NH (2009) The crustacean Parhyale hawaiensis: a new model for arthropod development. Cold Spring Harb Protoc 1:1–10Google Scholar
  75. 75.
    Zerlotini A, Heiges M, Wang H, Moraes RL, Dominitini AJ, Ruiz JC, Kissinger JC, Oliveira G (2009) SchistoDB: a Schistosoma mansoni genome resource. Nucleic Acids Res 37:D579–582CrossRefGoogle Scholar
  76. 76.
    Bhardwaj R, Krautz-Peterson G, Skelly PJ (2011) Using RNA interference in Schistosoma mansoni. Methods Mol Biol 764:223–239CrossRefGoogle Scholar
  77. 77.
    Robb SM, Ross E, Sanchez Alvarado A (2008) SmedGD: the Schmidtea mediterranea genome database. Nucleic Acids Res 36:D599–606CrossRefGoogle Scholar
  78. 78.
    Newmark PA, Reddien PW, Cebria F, Sanchez Alvarado A (2003) Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. Proc Natl Acad Sci U S A 100(Suppl 1):11861–11865CrossRefGoogle Scholar
  79. 79.
    Sanchez Alvarado A, Newmark PA (1999) Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc Natl Acad Sci U S A 96:5049–5054CrossRefGoogle Scholar
  80. 80.
    Lu HL, Vinson SB, Pietrantonio PV (2009) Oocyte membrane localization of vitellogenin receptor coincides with queen flying age, and receptor silencing by RNAi disrupts egg formation in fire ant virgin queens. FEBS J 276:3110–3123CrossRefGoogle Scholar
  81. 81.
    Cameron RA, Samanta M, Yuan A, He D, Davidson E (2009) SpBase: the sea urchin genome database and web site. Nucleic Acids Res 37:D750–754CrossRefGoogle Scholar
  82. 82.
    Song JL, Wessel GM (2007) Genes involved in the RNA interference pathway are differentially expressed during sea urchin development. Dev Dyn 236:3180–3190CrossRefGoogle Scholar
  83. 83.
    Posnien N, Schinko J, Grossmann D, Shippy TD, Konopova B, Bucher G (2009) RNAi in the red flour beetle (Tribolium), Cold Spring Harb Protoc 8:1–8Google Scholar
  84. 84.
    Ma Y, Creanga A, Lum L, Beachy PA (2006) Prevalence of off-target effects in Drosophila RNA interference screens. Nature 443:359–363CrossRefGoogle Scholar
  85. 85.
    Kulkarni MM, Booker M, Silver SJ, Friedman A, Hong P, Perrimon N, Mathey-Prevot B (2006) Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. Nat Methods 3:833–838Google Scholar
  86. 86.
    Lin X, Ruan X, Anderson MG, McDowell JA, Kroeger PE, Fesik SW, Shen Y (2005) siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res 33:4527–4535CrossRefGoogle Scholar
  87. 87.
    Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421CrossRefGoogle Scholar
  88. 88.
    Du Q, Thonberg H, Wang J, Wahlestedt C, Liang Z (2005) A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Nucleic Acids Res 33:1671–1677CrossRefGoogle Scholar
  89. 89.
    Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20:6877–6888CrossRefGoogle Scholar
  90. 90.
    Anderson EM, Birmingham A, Baskerville S, Reynolds A, Maksimova E, Leake D, Fedorov Y, Karpilow J, Khvorova A (2008) Experimental validation of the importance of seed complement frequency to siRNA specificity. RNA (New York, NY) 14:853–861.Google Scholar
  91. 91.
    Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, Baskerville S, Maksimova E, Robinson K, Karpilow J, Marshall WS, Khvorova A (2006) 3’ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 3:199–204CrossRefGoogle Scholar
  92. 92.
    Czech B, Hannon GJ (2011) Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 12:19–31CrossRefGoogle Scholar
  93. 93.
    Tomari Y, Matranga C, Haley B, Martinez N, Zamore PD (2004) A protein sensor for siRNA asymmetry. Science 306:1377–1380CrossRefGoogle Scholar
  94. 94.
    Elbashir SM, Harborth J, Weber K, Tuschl T (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26:199–213CrossRefGoogle Scholar
  95. 95.
    Chan CY, Carmack CS, Long DD, Maliyekkel A, Shao Y, Roninson IB, Ding Y (2009) A structural interpretation of the effect of GC-content on efficiency of RNA interference. BMC Bioinformatics 10(Suppl 1):S33CrossRefGoogle Scholar
  96. 96.
    Kirchner R, Vogtherr M, Limmer S, Sprinzl M (1998) Secondary structure dimorphism and interconversion between hairpin and duplex form of oligoribonucleotides. Antisense Nucleic Acid Drug Dev 8:507–516CrossRefGoogle Scholar
  97. 97.
    Tafer H, Ameres SL, Obernosterer G, Gebeshuber CA, Schroeder R, Martinez J, Hofacker IL (2008) The impact of target site accessibility on the design of effective siRNAs. Nat Biotechnol 26:578–583CrossRefGoogle Scholar
  98. 98.
    Ender C, Meister G (2010) Argonaute proteins at a glance. J Cell Sci 123:1819–1823CrossRefGoogle Scholar
  99. 99.
    Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441CrossRefGoogle Scholar
  100. 100.
    Aleman LM, Doench J, Sharp PA (2007) Comparison of siRNA-induced off-target RNA and protein effects. RNA (New York, NY) 13:385–395.Google Scholar
  101. 101.
    Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637CrossRefGoogle Scholar
  102. 102.
    Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, Linsley PS (2006) Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA (New York, NY) 12:1179–1187.Google Scholar
  103. 103.
    Petri S, Dueck A, Lehmann G, Putz N, Rudel S, Kremmer E, Meister G (2011) Increased siRNA duplex stability correlates with reduced off-target and elevated on-target effects. RNA (New York, NY) 17:737–749.Google Scholar
  104. 104.
    Ghildiyal M, Xu J, Seitz H, Weng Z, Zamore PD (2010) Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA (New York, NY) 16:43–56.Google Scholar
  105. 105.
    Ameres SL, Hung JH, Xu J, Weng Z, Zamore PD (2011) Target RNA-directed tailing and trimming purifies the sorting of endo-siRNAs between the two Drosophila Argonaute proteins. RNA (New York, NY) 17:54–63.Google Scholar
  106. 106.
    Vermeulen A, Behlen L, Reynolds A, Wolfson A, Marshall WS, Karpilow J, Khvorova A (2005) The contributions of dsRNA structure to Dicer specificity and efficiency. RNA (New York, NY) 11:674–682.Google Scholar
  107. 107.
    Vert JP, Foveau N, Lajaunie C, Vandenbrouck Y (2006) An accurate and interpretable model for siRNA efficacy prediction. BMC Bioinformatics 7:520CrossRefGoogle Scholar
  108. 108.
    Fellmann C, Zuber J, McJunkin K, Chang K, Malone CD, Dickins RA, Xu Q, Hengartner MO, Elledge SJ, Hannon GJ, Lowe SW (2011) Functional identification of optimized RNAi triggers using a massively parallel sensor assay. Mol Cell 41:733–746CrossRefGoogle Scholar
  109. 109.
    Steinbrink S, Boutros M (2008) RNAi screening in cultured Drosophila cells. Methods Mol Biol 420:139–153CrossRefGoogle Scholar
  110. 110.
    Raghavan S, Williams I, Aslam H, Thomas D, Szoor B, Morgan G, Gross S, Turner J, Fernandes J, VijayRaghavan K, Alphey L (2000) Protein phosphatase 1beta is required for the maintenance of muscle attachments. Curr Biol 10:269–272CrossRefGoogle Scholar
  111. 111.
    Stein LD, Mungall C, Shu S, Caudy M, Mangone M, Day A, Nickerson E, Stajich JE, Harris TW, Arva A, Lewis S (2002) The generic genome browser: a building block for a model organism system database. Genome Res 12:1599–1610CrossRefGoogle Scholar
  112. 112.
    Yamaguchi J, Mizoguchi T, Fujiwara H (2011) siRNAs induce efficient RNAi response in Bombyx mori Embryos. PLoS One 6, 1–7 (e25469)Google Scholar
  113. 113.
    Bartscherer K, Pelte N, Ingelfinger D, Boutros M (2006) Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125:523–533CrossRefGoogle Scholar
  114. 114.
    Bassik MC, Lebbink RJ, Churchman LS, Ingolia NT, Patena W, LeProust EM, Schuldiner M, Weissman JS, McManus MT (2009) Rapid creation and quantitative monitoring of high coverage shRNA libraries. Nat Methods 6:443–445CrossRefGoogle Scholar
  115. 115.
    Li L, Lin X, Khvorova A, Fesik SW, Shen Y (2007) Defining the optimal parameters for hairpin-based knockdown constructs. RNA (New York, NY) 13:1765–1774.Google Scholar
  116. 116.
    Guberman JM, Ai J, Arnaiz O, Baran J, Blake A, Baldock R, Chelala C, Croft D, Cros A, Cutts RJ, Di Genova A, Forbes S, Fujisawa T, Gadaleta E, Goodstein DM, Gundem G, Haggarty B, Haider S, Hall M, Harris T, Haw R, Hu S, Hubbard S, Hsu J, Iyer V, Jones P, Katayama T, Kinsella R, Kong L, Lawson D, Liang Y, Lopez-Bigas N, Luo J, Lush M, Mason J, Moreews F, Ndegwa N, Oakley D, Perez-Llamas C, Primig M, Rivkin E, Rosanoff S, Shepherd R, Simon R, Skarnes B, Smedley D, Sperling L, Spooner W, Stevenson P, Stone K, Teague J, Wang J, Whitty B, Wong DT, Wong-Erasmus M, Yao L, Youens-Clark K, Yung C, Zhang J, Kasprzyk A (2011) BioMart Central Portal: an open database network for the biological community. Database (Oxford), bar041:1–9Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Department of Cell and Molecular BiologyHeidelberg UniversityHeidelbergGermany
  2. 2.Division of Signaling and Functional GenomicsGerman Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations