Skip to main content

Safety Assessment of Biolistic DNA Vaccination

  • Protocol
  • First Online:
Biolistic DNA Delivery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 940))

Abstract

DNA-based vector systems have been widely studied as new modalities for the prevention and treatment of human diseases. As for all other medicinal products, safety is an important aspect in the evaluation of such products. In this chapter we reflect on the basic safety issues which have been raised with respect to preventive and therapeutic DNA vaccines, including insertional mutagenesis in case of chromosomal integration, possible formation of anti-DNA antibodies, induction of autoimmune responses and/or immunological tolerance. In addition, local reactions at the site of administration and adverse effects resulting from plasmid DNA spread to nontarget tissues are discussed. Most importantly, however, the benefit-risk profile of a medicinal product is crucial for a decision on providing marketing authorization or not. A product has an acceptable benefit-risk profile if the benefits of the product outweigh its risks for the treated patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. National Library of Medicine, National Institutes of Health, Clinical Trials database <http://clinicaltrials.gov/ct2/search>.

  2. European Medicines Agency, EU Clinical Trials register <https://www.clinicaltrialsregister.eu/contacts.html>.

  3. Liu MA (2011) DNA vaccines: an historical perspective and view to the future. Immunol Rev 239:62–84

    Article  PubMed  CAS  Google Scholar 

  4. Kendall M (2006) Engineering of needle-free physical methods to target epidermal cells for DNA vaccination. Vaccine 24:4651–4656

    Article  PubMed  CAS  Google Scholar 

  5. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  PubMed  CAS  Google Scholar 

  6. Albert ML, Sauter B, Bhardwaj N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392:86–89

    Article  PubMed  CAS  Google Scholar 

  7. Donnelly JJ, Wahren B, Liu MA (2005) DNA vaccines: progress and challenges. J Immunol 175:633–639

    PubMed  CAS  Google Scholar 

  8. Feltquate DM et al (1997) Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J Immunol 158:2278–2284

    PubMed  CAS  Google Scholar 

  9. Ferraro B et al (2011) Clinical applications of DNA vaccines: current progress. Clin Infect Dis 53:296–302

    Article  PubMed  CAS  Google Scholar 

  10. Otten G et al (2004) Enhancement of DNA vaccine potency in rhesus macaques by electroporation. Vaccine 22:2489–2493

    Article  PubMed  CAS  Google Scholar 

  11. Satkauskas S et al (2001) Slow accumulation of plasmid in muscle cells: supporting evidence for a mechanism of DNA uptake by receptor-mediated endocytosis. Mol Ther 4:317–323

    Article  PubMed  CAS  Google Scholar 

  12. Barry ME et al (1999) Role of endogenous endonucleases and tissue site in transfection and CpG-mediated immune activation after naked DNA injection. Hum Gene Ther 10:2461–2480

    Article  PubMed  CAS  Google Scholar 

  13. Dale CJ et al (2006) Prime-boost strategies in DNA vaccines. Methods Mol Med 127:171–197

    PubMed  CAS  Google Scholar 

  14. Gurunathan S, Klinman DM, Seder RA (2000) DNA vaccines: immunology, application, and optimization. Annu Rev Immunol 18:927–974

    Article  PubMed  CAS  Google Scholar 

  15. Schüle S et al (2010) Regulatory requirements for clinical trial and marketing authorisation application for gene therapy medicinal products. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 53:30–37

    Article  PubMed  Google Scholar 

  16. /120/EC, The Commission of the European communities. Off J Eur Comm L 242 15(9)2009, p. 3–12. <http://ec.europa.eu/health/files/eudralex/vol-1/dir_2009_120/dir_2009_120_en.pdf>.

  17. /83/EC. The European Parliament and the Council of the European Union. Off. J Eur Comm. L311, 67–126 (2001). <http://ec.europa.eu/health/files/eudralex/vol-1/dir_2001_83_cons2009/2001_83_cons2009_en.pdf>.

  18. Gaspar HB et al (2004) Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 364:2181–2187

    Article  PubMed  CAS  Google Scholar 

  19. Cavazzana-Calvo M et al (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:669–672

    Article  PubMed  CAS  Google Scholar 

  20. Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M (2010) 20 years of gene therapy for SCID. Nat Immunol 11:457–460

    Article  PubMed  CAS  Google Scholar 

  21. Wang Z et al (2004) Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther 11:711–721

    Article  PubMed  CAS  Google Scholar 

  22. Ledwith BJ et al (2000) Plasmid DNA vaccines: investigation of integration into host cellular DNA following intramuscular injection in mice. Intervirology 43:258–272

    Article  PubMed  CAS  Google Scholar 

  23. Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9:776–788

    Article  PubMed  CAS  Google Scholar 

  24. Faurez F et al (2010) Biosafety of DNA vaccines: new generation of DNA vectors and current knowledge on the fate of plasmids after injection. Vaccine 28:3888–3895

    Article  PubMed  CAS  Google Scholar 

  25. WHO. World Health Organization: Guidelines for assuring the quality and nonclinical safety evaluation of DNA vaccines; WHO Technical Report Series No 941, 2007, Annex 1. <http://www.who.int/biologicals/publications/trs/areas/vaccines/dna/Annex%201_DNA%20vaccines.pdf>.

  26. Food and Drug Administration: Guidance for Industry: Considerations for plasmid DNA vaccines for infectious disease indications, 2007 < http://www.fda.gov/biologicsbloodvaccines/guidancecomplianceregulatoryinformation/guidances/vaccines/ucm074770.htm >.

  27. Committee for the Medicinal Product for Human Use (CHMP): Guideline on safety and efficacy follow-up - risk management of advanced therapy medicinal products (EMEA/149995/2008) <http://www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2009/10/WC500006326.pdf>.

  28. Committee for Medicinal Products for Human Use CHMP/GTWP/60436/07. Follow-up of patients administered with gene therapy medicinal products (Draft). EMEA, London. 2008. <http://www.emea.europa.eu/pdfs/human/genetherapy/6043607endraft.pdf>.

  29. Manam S et al (2000) Plasmid DNA vaccines: tissue distribution and effects of DNA sequence, adjuvants and delivery method on integration into host DNA. Intervirology 43:273–281

    Article  PubMed  CAS  Google Scholar 

  30. Bureau MF et al (2004) Intramuscular plasmid DNA electrotransfer: biodistribution and degradation. Biochim Biophys Acta 1676:138–148

    Article  PubMed  CAS  Google Scholar 

  31. Gallot D et al (2002) Systemic diffusion including germ cells after plasmidic in utero gene transfer in the rat. Fetal Diagn Ther 17:157–162

    Article  PubMed  CAS  Google Scholar 

  32. Schalk JA et al (2006) Preclinical and clinical safety studies on DNA vaccines. Hum Vaccin 2:45–53

    Article  PubMed  CAS  Google Scholar 

  33. /2005. EMEA/CHMP: Guideline on non-clinical testing for inadvertent germline transmission of gene transfer vectors <http://www.emea.europa.eu/pdfs/human/swp/27397405enfin.pdf>.

  34. Donnelly JJ et al (1997) DNA vaccines. Annu Rev Immunol 15:617–648

    Article  PubMed  CAS  Google Scholar 

  35. Mor G, Eliza M (2001) Plasmid DNA vaccines. Immunology, tolerance, and autoimmunity. Mol Biotechnol 19:245–250

    Article  PubMed  CAS  Google Scholar 

  36. Pavlovic M et al (2010) Pathogenic and epiphenomenal anti-DNA antibodies in SLE. Autoimmune Dis 2011:462841

    PubMed  Google Scholar 

  37. Manson JJ, Isenberg DA (2006) The origin and pathogenic consequences of anti-dsDNA antibodies in systemic lupus erythematosus. Expert Rev Clin Immunol 2:377–385

    Article  PubMed  CAS  Google Scholar 

  38. Isenberg DA et al (2007) Fifty years of anti-ds DNA antibodies: are we approaching journey’s end? Rheumatology (Oxford) 46:1052–1056

    Article  CAS  Google Scholar 

  39. Ichino M et al (1999) Factors associated with the development of neonatal tolerance after the administration of a plasmid DNA vaccine. J Immunol 162:3814–3818

    PubMed  CAS  Google Scholar 

  40. Fioretti D et al (2010) DNA vaccines: developing new strategies against cancer. J Biomed Biotechnol 2010:174378

    Article  PubMed  Google Scholar 

  41. Mor G et al (1996) Induction of neonatal tolerance by plasmid DNA vaccination of mice. J Clin Invest 98:2700–2705

    Article  PubMed  CAS  Google Scholar 

  42. van Drunen Littel-van den Hurk S, Hannaman D (2010) Electroporation for DNA immunization: clinical application. Expert Rev Vaccines 9, 503–517

    Google Scholar 

  43. Dean HJ (2005) Epidermal delivery of protein and DNA vaccines. Expert Opin Drug Deliv 2:227–236

    Article  PubMed  CAS  Google Scholar 

  44. Anliker B, Longhurst S, Buchholz CJ (2010) Environmental risk assessment for medicinal products containing genetically modified organisms. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 53:52–57

    Article  PubMed  CAS  Google Scholar 

  45. ERA. Committee for the Medicinal Product for Human Use (CHMP). Guideline on scientific requirements for the environmental risk assessment of gene therapy medicinal products. Doc. Ref. EMEA/CHMP/GTWP/125491/2006. EMEA, London, 2008. < >.

    Google Scholar 

  46. Droge M, Puhler A, Selbitschka W (1998) Horizontal gene transfer as a biosafety issue: a natural phenomenon of public concern. J Biotechnol 64:75–90

    Article  PubMed  CAS  Google Scholar 

  47. 14. European Pharmacopeia, 6th Edition, Supplement 6.3. Chapter 5.14. Gene Transfer Medicinal Products for Human Use. 01/2008:54100, correct 6.0.

    Google Scholar 

  48. Degryse E (1991) Stability of a host-vector system based on complementation of an essential gene in Escherichia coli. J Biotechnol 18:29–39

    Article  PubMed  CAS  Google Scholar 

  49. Mairhofer J et al (2008) A novel antibiotic free plasmid selection system: advances in safe and efficient DNA therapy. Biotechnol J 3:83–89

    Article  PubMed  CAS  Google Scholar 

  50. Cranenburgh RM et al (2001) Escherichia coli strains that allow antibiotic-free plasmid selection and maintenance by repressor titration. Nucleic Acids Res 29:e26

    Article  PubMed  CAS  Google Scholar 

  51. Garmory HS et al (2005) Antibiotic-free plasmid stabilization by operator-repressor titration for vaccine delivery by using live Salmonella enterica Serovar typhimurium. Infect Immun 73:2005–2011

    Article  PubMed  CAS  Google Scholar 

  52. Williams SG et al (1998) Repressor titration: a novel system for selection and stable maintenance of recombinant plasmids. Nucleic Acids Res 26:2120–2124

    Article  PubMed  CAS  Google Scholar 

  53. Hanke T, McMichael AJ (2000) Design and construction of an experimental HIV-1 vaccine for a year-2000 clinical trial in Kenya. Nat Med 6:951–955

    Article  PubMed  CAS  Google Scholar 

  54. Hanke T et al (2002) Lack of toxicity and persistence in the mouse associated with administration of candidate DNA- and modified vaccinia virus Ankara (MVA)-based HIV vaccines for Kenya. Vaccine 21:108–114

    Article  PubMed  CAS  Google Scholar 

  55. Darquet AM et al (1997) A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Ther 4:1341–1349

    Article  PubMed  CAS  Google Scholar 

  56. Kay MA, He CY, Chen ZY (2010) A robust system for production of minicircle DNA vectors. Nat Biotechnol 28:1287–1289

    Article  PubMed  CAS  Google Scholar 

  57. Schirmbeck R et al (2001) Priming of immune responses to hepatitis B surface antigen with minimal DNA expression constructs modified with a nuclear localization signal peptide. J Mol Med (Berl) 79:343–350

    Article  CAS  Google Scholar 

  58. Lopez-Fuertes L et al (2002) DNA vaccination with linear minimalistic (MIDGE) vectors confers protection against Leishmania major infection in mice. Vaccine 21:247–257

    Article  PubMed  CAS  Google Scholar 

  59. Stacey KJ, Sweet MJ, Hume DA (1996) Macrophages ingest and are activated by bacterial DNA. J Immunol 157:2116–2122

    PubMed  CAS  Google Scholar 

  60. Krieg AM et al (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546–549

    Article  PubMed  CAS  Google Scholar 

  61. Jakob T et al (1998) Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for dendritic cells in the augmentation of Th1 responses by immunostimulatory DNA. J Immunol 161:3042–3049

    PubMed  CAS  Google Scholar 

  62. Landrigan A, Wong MT, Utz PJ (2011) CpG and non-CpG oligodeoxynucleotides directly costimulate mouse and human CD4+ T cells through a TLR9- and MyD88-independent mechanism. J Immunol 187:3033–3043

    Article  PubMed  CAS  Google Scholar 

  63. Sato Y et al (1996) Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 273:352–354

    Article  PubMed  CAS  Google Scholar 

  64. Lindau D et al (2011) Nucleosome-induced neutrophil activation occurs independently of TLR9 and endosomal acidification: implications for systemic lupus erythematosus. Eur J Immunol 41:669–681

    Article  PubMed  CAS  Google Scholar 

  65. Yasuda K et al (2009) Requirement for DNA CpG content in TLR9-dependent dendritic cell activation induced by DNA-containing immune complexes. J Immunol 183:3109–3117

    Article  PubMed  CAS  Google Scholar 

  66. Ada G, Ramshaw I (2003) DNA vaccination. Expert Opin Emerg Drugs 8:27–35

    Article  PubMed  CAS  Google Scholar 

  67. Yamada H et al (2002) Effect of suppressive DNA on CpG-induced immune activation. J Immunol 169:5590–5594

    PubMed  CAS  Google Scholar 

  68. Krieg AM et al (1998) Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proc Natl Acad Sci U S A 95:12631–12636

    Article  PubMed  CAS  Google Scholar 

  69. Tolmachov O (2009) Designing plasmid vectors. Methods Mol Biol 542:117–129

    Article  PubMed  CAS  Google Scholar 

  70. Wooddell CI et al (2011) Muscle damage after delivery of naked plasmid DNA into skeletal muscles is batch dependent. Hum Gene Ther 22:225–235

    Article  PubMed  CAS  Google Scholar 

  71. Magalhaes PO et al (2007) Methods of endotoxin removal from biological preparations: a review. J Pharm Pharm Sci 10:388–404

    PubMed  Google Scholar 

  72. Schleef M et al (2010) Production of non viral DNA vectors. Curr Gene Ther 10:487–507

    Article  PubMed  CAS  Google Scholar 

  73. MacGregor RR et al (1998) First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J Infect Dis 178:92–100

    Article  PubMed  CAS  Google Scholar 

  74. Lu S, Wang S, Grimes-Serrano JM (2008) Current progress of DNA vaccine studies in humans. Expert Rev Vaccines 7:175–191

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Cichutek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Langer, B., Renner, M., Scherer, J., Schüle, S., Cichutek, K. (2013). Safety Assessment of Biolistic DNA Vaccination. In: Sudowe, S., Reske-Kunz, A. (eds) Biolistic DNA Delivery. Methods in Molecular Biology, vol 940. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-110-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-110-3_27

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-109-7

  • Online ISBN: 978-1-62703-110-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics