Identifying Pathways of Coordinated Gene Expression

  • Timothy Hancock
  • Ichigaku Takigawa
  • Hiroshi Mamitsuka
Part of the Methods in Molecular Biology book series (MIMB, volume 939)


Methods capable of identifying genetic pathways with coordinated expression signatures are critical to advance our understanding of the functions of biological networks. Currently, the most comprehensive and validated biological networks are metabolic networks. Complete metabolic networks are easily sourced from multiple online databases. These databases reveal metabolic networks to be large, highly complex structures. This complexity is sufficient to hide the specific details on which pathways are interacting to produce an observed network response. In this chapter we will outline a complete framework for identifying the metabolic pathways that relate to an observed phenomenon. To illuminate the functional metabolic pathways, we overlay microarray experiments on top of a complete metabolic network. We then extract the functional components within a metabolic network through a combination of novel pathway ranking, clustering, and classification algorithms. This chapter is designed as a simple tutorial which enables this framework to be applied to any metabolic network and microarray data.

Key words

Metabolic network Gene pathway Micorarray expression Ranking clustering Classification 


  1. 1.
    Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30PubMedCrossRefGoogle Scholar
  2. 2.
    Caspi R, Altman T, Dale JM, Dreher K, Fulcher CA, Gilham F, Kaipa P, Karthikeyan AS, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Paley S, Popescu L, Pujar A, Shearer AG, Zhang P, Karp PD (2010) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 38(Database issue):D473–9Google Scholar
  3. 3.
    Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B, Garapati P, Hemish J, Hermjakob H, Jassal B, Kanapin A, Lewis S, Mahajan S, May B, Schmidt E, Vastrik I, Wu G, Birney E, Stein L, D’Eustachio P (2009) Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res 37:D619–22PubMedCrossRefGoogle Scholar
  4. 4.
    Vastrik I, D’Eustachio P, Schmidt E, Gopinath G, Croft D, de Bono B, Gillespie M, Jassal B, Lewis S, Matthews L, Wu G, Birney E, Stein L (2007) Reactome: a knowledge base of biologic pathways and processes. Genome Biol 8(3):R39PubMedCrossRefGoogle Scholar
  5. 5.
    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS 102(43):15545–15550PubMedCrossRefGoogle Scholar
  6. 6.
    Liu Q, Dinu I, Adewale AJ, Potter JD, Yasui Y (2007) Comparative evaluation of gene-set analysis methods. BMC Bioinformatics 8:431PubMedCrossRefGoogle Scholar
  7. 7.
    Sanguinetti G, Noirel J, Wright PC (2008) MMG: a probabilistic tool to identify submodules of metabolic pathways. Bioinformatics 24(8):1078–84PubMedCrossRefGoogle Scholar
  8. 8.
    Hanisch D, Zien A, Zimmer R, Lengauer T (2002) Co-clustering of biological networks and gene expression data. Bioinformatics 18:S145–54PubMedCrossRefGoogle Scholar
  9. 9.
    Ulitsky I, Shamir R (2007) Identification of functional modules using network topology and high-throughput data. BMC Syst Biol 1:8PubMedCrossRefGoogle Scholar
  10. 10.
    Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18:S233–40PubMedCrossRefGoogle Scholar
  11. 11.
    Hancock T, Takigawa I, Mamitsuka H (2010) Mining metabolic pathways through gene expression. Bioinformatics 26(17):2128–2135PubMedCrossRefGoogle Scholar
  12. 12.
    Takigawa I, Mamitsuka H (2008) Probabilistic path ranking based on adjacent pairwise coexpression for metabolic transcripts analysis. Bioinformatics 24(2):250–257PubMedCrossRefGoogle Scholar
  13. 13.
    Mamitsuka H, Okuno Y, Yamaguchi A (2003) Mining biologically active patterns in metabolic pathways using microarray expression profiles. SIGKDD Explorations 5(2):113–121CrossRefGoogle Scholar
  14. 14.
    Hancock T. and Mamitsuka H (2009) A Markov Classification Model for Metabolic Pathways, Algorithms in Bioinformatics, 9th International Workshop, (WABI), Philadelphia, PA, USA. Proceedings, WABI, volume 5724, Springer, Eds: Salzberg, Steven, and Warnow, TandyGoogle Scholar
  15. 15.
    Hancock T, Mamitsuka H (2010) A Markov classification model for metabolic pathways. Algorithms Mol Biol 5(1):10PubMedCrossRefGoogle Scholar
  16. 16.
    Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11(12):4241–57PubMedGoogle Scholar
  17. 17.
    Gentleman R, Carey V, Huber W, Irizarray R, Dudoit S (2005) Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer, BerlinCrossRefGoogle Scholar
  18. 18.
    Gasch A, Carey V (2010) gaschyhs: Expressionset for response of yeast to heat shock and other environmental stresses.
  19. 19.
    Yen J (1971) Finding the k-shortest loopless paths in a network. Manage Sci 17:712–716CrossRefGoogle Scholar
  20. 20.
    Lawler E (1972) A procedure for computing the k best solutions to discrete optimization problems and its application to the shortest path problem. Manage Sci 18:401–405CrossRefGoogle Scholar
  21. 21.
    Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm, J Roy Stat Soc B, 39(1), 1–38.Google Scholar
  22. 22.
    Park MY, Hastie T (2008) Penalized logistic regression for detecting gene interactions. Biostatistics 9(1):30–50PubMedCrossRefGoogle Scholar
  23. 23.
    Jordan M, Jacobs R (1994) Hierarchical mixtures of experts and the EM algorithm. Neural Comput 6(2):181–214CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Timothy Hancock
    • 1
  • Ichigaku Takigawa
    • 1
  • Hiroshi Mamitsuka
    • 1
  1. 1.Bioinformatics Center, Institute for Chemical ResearchKyoto UniversityUjiJapan

Personalised recommendations