Localization Prediction and Structure-Based In Silico Analysis of Bacterial Proteins: With Emphasis on Outer Membrane Proteins

  • Kenichiro Imai
  • Sikander Hayat
  • Noriyuki Sakiyama
  • Naoya Fujita
  • Kentaro Tomii
  • Arne Elofsson
  • Paul Horton
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 939)

Abstract

In this chapter, we first discuss protein localization in bacteria and evaluate some localization prediction tools on an independent dataset. Next, we focus on β-barrel outer membrane proteins (BOMPs), describing and evaluating new tools for BOMP detection and topology prediction. Finally, we apply general protein structure prediction methods on these proteins to show that the structure of most BOMPs in E. coli can be modeled reliably.

Key words

Protein localization Topologyprediction β-barrelmembrane proteins SVM HMM 

Abbreviations

BAM

ß -barrel assembly machine complex

BBOMP

bacterial ß -barrel outer membrane protein

HMM

hidden markov model

SVM

support vector machine

ioM-profile

inside-outside-membrane profile

References

  1. 1.
    von Heijne G (1985) Signal sequences. The limits of variation. J Mol Biol 184:99–105Google Scholar
  2. 2.
    Bendtsen J, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795PubMedCrossRefGoogle Scholar
  3. 3.
    De Buck E, Lammertyn E, Anné J (2008) The importance of the twin-arginine translocation pathway for bacterial virulence. Trends Microbiol 16:442–453PubMedCrossRefGoogle Scholar
  4. 4.
    Bendtsen J, Nielsen H, Widdick D, Palmer T, Brunak S (2005) Prediction of twin-arginine signal peptides. BMC Bioinf 6:167CrossRefGoogle Scholar
  5. 5.
    Voulhoux R, Ball G, Ize B, Vasil M, Lazdunski A, Wu L, Filloux A (2001) Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. EMBO J 20:6735–6741PubMedCrossRefGoogle Scholar
  6. 6.
    Reichow S, Korotkov K, Gonen M, Sun J, Delarosa J, Hol WGJ, Gonen T (2011) The binding of cholera toxin to the periplasmic vestibule of the type II secretion channel. Channels (Austin) 5:215–218CrossRefGoogle Scholar
  7. 7.
    Jacob-Dubuisson F, Fernandez R, Coutte L (2004) Protein secretion through autotransporter and two-partner pathways. Biochim Biophys Acta 1694:235–257PubMedCrossRefGoogle Scholar
  8. 8.
    Desvaux M, Parham N, Henderson I (2004) The autotransporter secretion system. Res Microbiol 155:53–60PubMedCrossRefGoogle Scholar
  9. 9.
    Thanassi D, Stathopoulos C, Karkal A, Li H (2005) Protein secretion in the absence of ATP: the autotransporter, two-partner secretion and chaperone/usher pathways of gram-negative bacteria (review). Mol Membr Biol 22:63–72PubMedCrossRefGoogle Scholar
  10. 10.
    Cescau S, Debarbieux L, Wandersman C (2007) Probing the in vivo dynamics of type I protein secretion complex association through sensitivity to detergents. J Bacteriol 189:1496–1504PubMedCrossRefGoogle Scholar
  11. 11.
    Sory M, Boland A, Lambermont I, Cornelis G (1995) Identification of the YopE and YopH domains required for secretion and internalization into the cytosol of macrophages, using the cyaA gene fusion approach. Proc Natl Acad Sci USA 92:11998–2002PubMedCrossRefGoogle Scholar
  12. 12.
    Anderson D, Schneewind O (1997) A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science 278:1140–1143PubMedCrossRefGoogle Scholar
  13. 13.
    Arnold R, Brandmaier S, Kleine F, Tischler P, Heinz E, Behrens S, Niinikoski A, Mewes H-W, Horn M, Rattei T (2009) Sequence-based prediction of type III secreted proteins. PLoS Pathog 5:e1000376PubMedCrossRefGoogle Scholar
  14. 14.
    Samudrala R, Heffron F, McDermott J (2009) Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems. PLoS Pathog 5:e1000375PubMedCrossRefGoogle Scholar
  15. 15.
    Vergunst A, van Lier M, den Dulk-Ras A, Stüve TAG, Ouwehand A, Hooykaas P (2005) Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci USA 102:832–837PubMedCrossRefGoogle Scholar
  16. 16.
    Nagai H, Cambronne E, Kagan J, Amor J, Kahn R, Roy CR (2005) A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc Natl Acad Sci USA 102:826–831PubMedCrossRefGoogle Scholar
  17. 17.
    Hohlfeld S, Pattis I, Püls J, Plano G, Haas R, Fischer W (2006) A C-terminal translocation signal is necessary, but not sufficient for type IV secretion of the Helicobacter pylori CagA protein. Mol Microbiol 59:1624–1637PubMedCrossRefGoogle Scholar
  18. 18.
    Records A (2011) The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol Plant-Microbe Interact 24:751–757PubMedCrossRefGoogle Scholar
  19. 19.
    Gardy J, Laird M, Chen F, Rey S, Walsh C, Ester M, Brinkman FSL (2005) PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21:617–623PubMedCrossRefGoogle Scholar
  20. 20.
    Yu N et al (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615PubMedCrossRefGoogle Scholar
  21. 21.
    Yu C-S, Chen Y-C, Lu C-H, Hwang J-K (2006) Prediction of protein subcellular localization. Proteins 64:643–651PubMedCrossRefGoogle Scholar
  22. 22.
    Imai K, Asakawa N, Tsuji T, Akazawa F, Ino A, Sonoyama M, Mitaku S (2008) SOSUI-GramN: high performance prediction for sub-cellular localization of proteins in gram-negative bacteria. Bioinformation 2:417–421PubMedCrossRefGoogle Scholar
  23. 23.
    Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379PubMedCrossRefGoogle Scholar
  24. 24.
    Shen H-B, Chou K-C (2009) Gpos-mPLoc: a top-down approach to improve the quality of predicting subcellular localization of Gram-positive bacterial proteins. Protein Pept Lett 16:1478–1484PubMedCrossRefGoogle Scholar
  25. 25.
    Shen H-B, Chou K-C (2010) Gneg-mPLoc: a top-down strategy to enhance the quality of predicting subcellular localization of Gram-negative bacterial proteins. J Theor Biol 264:326–333PubMedCrossRefGoogle Scholar
  26. 26.
    Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  27. 27.
    Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659PubMedCrossRefGoogle Scholar
  28. 28.
    Tusnády G, Dosztányi Z, Simon I (2005) PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank. Nucleic Acids Res 33:D257–278Google Scholar
  29. 29.
    Matthews B (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405:442–451PubMedCrossRefGoogle Scholar
  30. 30.
    Dong C, Beis K, Nesper J, Brunkan-Lamontagne A, Clarke B, Whitfield C, Naismith J (2006) Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein. Nature 444:226–229PubMedCrossRefGoogle Scholar
  31. 31.
    Chandran V, Fronzes R, Duquerroy S, Cronin N, Navaza J, Waksman G (2009) Structure of the outer membrane complex of a type IV secretion system. Nature 462:1011–1015PubMedCrossRefGoogle Scholar
  32. 32.
    Schulz G (2000) beta-barrel membrane proteins. Curr Opin Struct Biol 10:443–447PubMedCrossRefGoogle Scholar
  33. 33.
    Ruiz N, Kahne D, Silhavy T (2006) Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol 4:57–66PubMedCrossRefGoogle Scholar
  34. 34.
    Bishop R (2008) Structural biology of membrane-intrinsic beta-barrel enzymes: sentinels of the bacterial outer membrane. Biochim Biophys Acta 1778:1881–1896PubMedCrossRefGoogle Scholar
  35. 35.
    Nikaido H (2009) Multidrug resistance in bacteria. Annu Rev Biochem 78:119–146PubMedCrossRefGoogle Scholar
  36. 36.
    Knowles T, Scott-Tucker A, Overduin M, Henderson I (2009) Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nat Rev Microbiol 7:206–214PubMedCrossRefGoogle Scholar
  37. 37.
    Hagan C, Silhavy T, Kahne D (2011) β-barrel membrane protein assembly by the Bam complex. Annu Rev Biochem 80:189–210PubMedCrossRefGoogle Scholar
  38. 38.
    Wickner W, Schekman R (2005) Protein translocation across biological membranes. Science 310:1452–1456PubMedCrossRefGoogle Scholar
  39. 39.
    Sklar J, Wu T, Kahne D, Silhavy T (2007) Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev 21:2473–2484PubMedCrossRefGoogle Scholar
  40. 40.
    Bitto E, McKay D (2003) The periplasmic molecular chaperone protein SurA binds a peptide motif that is characteristic of integral outer membrane proteins. J Biol Chem 278:49316–49322PubMedCrossRefGoogle Scholar
  41. 41.
    Xu X, Wang S, Hu Y, McKay D (2007) The periplasmic bacterial molecular chaperone SurA adapts its structure to bind peptides in different conformations to assert a sequence preference for aromatic residues. J Mol Biol 373:367–381PubMedCrossRefGoogle Scholar
  42. 42.
    Qu J, Mayer C, Behrens S, Holst O, Kleinschmidt J (2007) The trimeric periplasmic chaperone Skp of Escherichia coli forms 1:1 complexes with outer membrane proteins via hydrophobic and electrostatic interactions. J Mol Biol 374:91–105PubMedCrossRefGoogle Scholar
  43. 43.
    Spiess C, Beil A, Ehrmann M (1999) A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97:339–347PubMedCrossRefGoogle Scholar
  44. 44.
    Arnold T, Zeth K, Linke D (2010) Omp85 from the thermophilic cyanobacterium Thermosynechococcus elongatus differs from proteobacterial Omp85 in structure and domain composition. J Biol Chem 285:18003–18015PubMedCrossRefGoogle Scholar
  45. 45.
    Kim S, Malinverni J, Sliz P, Silhavy T, Harrison S, Kahne D (2007) Structure and function of an essential component of the outer membrane protein assembly machine. Science 317:961–964PubMedCrossRefGoogle Scholar
  46. 46.
    Struyve M, Moons M, Tommassen J (1991) Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J Mol Biol 218:141–148PubMedCrossRefGoogle Scholar
  47. 47.
    Robert V, Volokhina E, Senf F, Bos M, Van Gelder P, Tommassen J (2006) Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biol 4:e377PubMedCrossRefGoogle Scholar
  48. 48.
    Fairman J, Noinaj N, Buchanan S (2011) The structural biology of beta-barrel membrane proteins: a summary of recent reports. Curr Opin Struct Biol 29:1–9Google Scholar
  49. 49.
    Schulz G (2002) The structure of bacterial outer membrane proteins. Biochim Biophys Acta 1565:308–317PubMedCrossRefGoogle Scholar
  50. 50.
    Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–919PubMedCrossRefGoogle Scholar
  51. 51.
    Meng G, Surana NK, St Geme JW III, Waksman G (2006) Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter. EMBO J 25:2297–2304Google Scholar
  52. 52.
    Phan G et al (2011) Crystal structure of the FimD usher bound to its cognate FimC-FimH substrate. Nature 474:49–53PubMedCrossRefGoogle Scholar
  53. 53.
    Hemmingsen J, Gernert K, Richardson J, Richardson D (1994) The tyrosine corner: a feature of most Greek key beta-barrel proteins. Protein Sci 3:1927–1937PubMedCrossRefGoogle Scholar
  54. 54.
    Yau W, Wimley W, Gawrisch K, White S (1998) The preference of tryptophan for membrane interfaces. Biochemistry 37:14713–14718PubMedCrossRefGoogle Scholar
  55. 55.
    Hiller S, Garces R, Malia T, Orekhov V, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321:1206–1210PubMedCrossRefGoogle Scholar
  56. 56.
    Bayrhuber M, Meins T, Habeck M, Becker S, Giller K, Villinger S, Vonrhein C, Griesinger C, Zweckstetter M, Zeth K (2008) Structure of the human voltage-dependent anion channel. Proc Natl Acad Sci USA 105:15370–15375PubMedCrossRefGoogle Scholar
  57. 57.
    Ujwal R, Cascio D, Colletier J, Faham S, Zhang J, Toro L, Ping P, Abramson J (2008) The crystal structure of mouse VDAC1 at 2.3 Å resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci USA 105:17742–17747PubMedCrossRefGoogle Scholar
  58. 58.
    Garrow A, Agnew A, Westhead D (2005) TMB-Hunt: an amino acid composition based method to screen proteomes for beta-barrel transmembrane proteins. BMC Bioinf 6:56CrossRefGoogle Scholar
  59. 59.
    Berven F, Flikka K, Jensen H, Eidhammer I (2004) BOMP: a program to predict integral β-barrel outer membrane proteins encoded within genomes of Gram-negative bacteria. Nucleic Acids Res 32:W394–W399PubMedCrossRefGoogle Scholar
  60. 60.
    Wimley W (2002) Toward genomic identification of beta-barrel membrane proteins: composition and architecture of known structures. Protein Sci 11:301–312PubMedCrossRefGoogle Scholar
  61. 61.
    Bigelow H, Rost B (2006) PROFtmb: a web server for predicting bacterial transmembrane beta barrel proteins. Nucleic Acids Res 34:W186–W188PubMedCrossRefGoogle Scholar
  62. 62.
    Remmert M, Linke D, Lupas A, Söding J (2009) HHomp prediction and classification of outer membrane proteins. Nucleic Acids Res 37:W446–W451PubMedCrossRefGoogle Scholar
  63. 63.
    Remmert M, Biegert A, Linke D, Lupas A, Söding J (2010) Evolution of outer membrane β-barrels from an ancestral ββ hairpin. Mol Biol Evol 27:1348–1358PubMedCrossRefGoogle Scholar
  64. 64.
    Yu C, Chen Y, Lu C, Hwang J (2006) Prediction of protein subcellular localization. Proteins 64:643–651PubMedCrossRefGoogle Scholar
  65. 65.
    Tsirigos K, Bagos P, Hamodrakas S (2011) OMPdb: a database of beta-barrel outer membrane proteins from Gram-negative bacteria. Nucleic Acids Res 39:D324–D331PubMedCrossRefGoogle Scholar
  66. 66.
    Hunter S et al (2009) InterPro: the integrative protein signature database. Nucleic Acids Res 37:D211–D215PubMedCrossRefGoogle Scholar
  67. 67.
    Finn R et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222PubMedCrossRefGoogle Scholar
  68. 68.
    Seshadri K, Garemyr R, Wallin E, von Heijne G, Elofsson A (1998) Architecture of beta-barrel membrane proteins: analysis of trimeric porins. Protein Sci 7:2026–2032PubMedCrossRefGoogle Scholar
  69. 69.
    Schulz G (2002) The structure of bacterial outer membrane proteins. BBA-Biomembranes 1565:308–317PubMedCrossRefGoogle Scholar
  70. 70.
    Martelli P, Fariselli P, Krogh A, Casadio R (2002) A sequence-profile-based HMM for predicting and discriminating β barrel membrane proteins. Bioinformatics 18:S46PubMedCrossRefGoogle Scholar
  71. 71.
    Deng Y, Liu Q, Li Y (2004) Scoring hidden Markov models to discriminate beta-barrel membrane proteins. Comput Biol Chem 28:189–194PubMedCrossRefGoogle Scholar
  72. 72.
    Randall A, Cheng J, Sweredoski M, Baldi P (2008) TMBpro: secondary structure, β-contact and tertiary structure prediction of transmembrane β-barrel proteins. Bioinformatics 24:513–520PubMedCrossRefGoogle Scholar
  73. 73.
    Ou Y, Chen S, Gromiha M (2010) Prediction of membrane spanning segments and topology in β-barrel membrane proteins at better accuracy. J Comput Chem 31:217–223PubMedCrossRefGoogle Scholar
  74. 74.
    Singh N, Goodman A, Walter P, Helms V, Hayat S (2011) TMBHMM: a frequency profile based HMM for predicting the topology of transmembrane beta barrel proteins and the exposure status of transmembrane residues. Biochim Biophys Acta Protein Proteomics 1814:664–670CrossRefGoogle Scholar
  75. 75.
    Bagos P, Liakopoulos T, Hamodrakas S (2005) Evaluation of methods for predicting the topology of β-barrel outer membrane proteins and a consensus prediction method. BMC Bioinf 6:7CrossRefGoogle Scholar
  76. 76.
    Hayat S, Elofsson A (2011) BOCTOPUS: improved topology prediction of transmembrane β barrel proteins. submittedGoogle Scholar
  77. 77.
    Viklund H, Elofsson A (2008) OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 24:1662–1668PubMedCrossRefGoogle Scholar
  78. 78.
    Jones D (2007) Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23:538–544PubMedCrossRefGoogle Scholar
  79. 79.
    Lomize M, Lomize A, Pogozheva I, Mosberg H (2006) OPM: orientations of proteins in membranes database. Bioinformatics 22:623–625PubMedCrossRefGoogle Scholar
  80. 80.
    Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A (2009) Misc functions of the department of statistics (e1071). TU Wien Technical reportGoogle Scholar
  81. 81.
    Viklund H, Elofsson A (2004) Best alpha-helical transmembrane protein topology predictions are achieved using hidden Markov models and evolutionary information. Protein Sci 13:1908–1917PubMedCrossRefGoogle Scholar
  82. 82.
    Rost B, Sander C, Schneider R (1994) Redefining the goals of protein secondary structure prediction. J Mol Biol 235:13–26PubMedCrossRefGoogle Scholar
  83. 83.
    Iacovache I, Paumard P, Scheib H, Lesieur C, Sakai N, Matile S, Parker M, Van der Goot F (2006) A rivet model for channel formation by aerolysin-like pore-forming toxins. EMBO J 25:457–466PubMedCrossRefGoogle Scholar
  84. 84.
    Rychlewski L, Jaroszewski L, Li W, Godzik A (2000) Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Sci 9:232–241Google Scholar
  85. 85.
    Ohlson T, Wallner B, Elofsson A (2004) Profile-profile methods provide improved fold-recognition: a study of different profile-profile alignment methods. Proteins 57:188–197PubMedCrossRefGoogle Scholar
  86. 86.
    Dunbrack R (2006) Sequence comparison and protein structure prediction. Curr Opin Struct Biol 16:374–384PubMedCrossRefGoogle Scholar
  87. 87.
    Tomii K, Akiyama Y (2004) FORTE: a profile-profile comparison tool for protein fold recognition. Bioinformatics 20:594–595PubMedCrossRefGoogle Scholar
  88. 88.
    Shiozawa K, Maita N, Tomii K, Seto A, Goda N, Akiyama Y, Shimizu T, Shirakawa M, Hiroaki H (2004) Structure of the N-terminal domain of PEX1 AAA-ATPase. Characterization of a putative adaptor-binding domain. J Biol Chem 279:50060–50068Google Scholar
  89. 89.
    Tomii K, Hirokawa T, Motono C (2005) Protein structure prediction using a variety of profile libraries and 3D verification. Proteins 61:114–121PubMedCrossRefGoogle Scholar
  90. 90.
    Wang G, Jin Y, Dunbrack R (2005) Assessment of fold recognition predictions in CASP6. Proteins 61:46–66PubMedCrossRefGoogle Scholar
  91. 91.
    Ogawa H et al (2010) Chondroitin sulfate synthase-2/chondroitin polymerizing factor has two variants with distinct function. J Biol Chem 285:34155–34167PubMedCrossRefGoogle Scholar
  92. 92.
    Imai K, Fujita N, Gromiha M, Horton P (2011) Eukaryote-wide sequence analysis of mitochondrial β-barrel outer membrane proteins. BMC Genomics 12:79PubMedCrossRefGoogle Scholar
  93. 93.
    Wallner B, Larsson P, Elofsson A (2007) Pcons.net: protein structure prediction meta server. Nucleic Acids Res 35:W369–W374PubMedCrossRefGoogle Scholar
  94. 94.
    Yeats C, Lees J, Reid A, Kellam P, Martin N, Liu X, Orengo C (2008) Gene3D: comprehensive structural and functional annotation of genomes. Nucleic Acids Res 36:D414–D418PubMedCrossRefGoogle Scholar
  95. 95.
    Murzin A, Lesk A, Chothia C (1994) Principles determining the structure of β-sheet barrels in proteins I. A theoretical analysis. J Mol Biol 236:1369–1381Google Scholar
  96. 96.
    Söding J, Biegert A, Lupas A (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244PubMedCrossRefGoogle Scholar
  97. 97.
    Gromiha M, Ahmad S, Suwa M (2005) Application of residue distribution along the sequence for discrimining outer membrane proteins. Comput Biol Chem 29:135–142PubMedCrossRefGoogle Scholar
  98. 98.
    Yan R, Chen Z, Zhang Z (2011) Outer membrane proteins can be simply identified using secondary structure element alignment. BMC Bioinf 12:76CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Kenichiro Imai
    • 1
    • 2
  • Sikander Hayat
    • 3
  • Noriyuki Sakiyama
    • 1
  • Naoya Fujita
    • 1
    • 4
  • Kentaro Tomii
    • 1
  • Arne Elofsson
    • 3
  • Paul Horton
    • 1
  1. 1.AIST, Computational Biology Research CenterTokyoJapan
  2. 2.Japan Society for the Promotion of ScienceTokyoJapan
  3. 3.Science for life laboratory, Department of Biochemistry and Biophysics, Stockholm Bioinformatics Center, Center for Biomembrane Research, Swedish E-science Research CenterStockholm UniversityStockholmSweden
  4. 4.Taiho Pharmaceutical CompanyIbarakiJapan

Personalised recommendations