Advertisement

Phytoplasma pp 61-72 | Cite as

Capturing Insect Vectors of Phytoplasmas

  • Phyllis Weintraub
  • Jürgen GrossEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 938)

Abstract

Insect vectors of phytoplasmas are limited to leafhoppers, planthoppers, and psyllids. While populations can be monitored by a number of passive techniques in the field, the capture of live insects is necessary for manipulation and study. A number of physical methods for capturing these insects already exist, but more innovative traps equipped with infochemical lures for species-specific monitoring and mass trapping are being developed.

Key words

Beat sheet Emergence cages Infochemicals Kairomones Mass trapping Monitoring Pheromones Push-pull method Sticky traps Vacuuming Volatile organic compounds 

References

  1. 1.
    Weintraub PG, Beanland L (2006) Insect vectors of phytoplasmas. Annu Rev Entomol 51:91–111PubMedCrossRefGoogle Scholar
  2. 2.
    Vega FE et al (1993) Detection of a plant pathogen in a nonvector insect species by the polymerase chain reaction. Phytopathology 83:621–624CrossRefGoogle Scholar
  3. 3.
    Maixner M (1993) Scaphoideus titanus, a possible vector of grapevine yellows in New York. Plant Dis 77:408–413CrossRefGoogle Scholar
  4. 4.
    Jarausch B, Jarausch W (2010) Psyllid vectors and their control. In: Weintraub PG, Jones P (eds) Phytoplasmas: genomes, plant hosts and vectors. CAB International Oxfordshire, Wallingford, UK, pp 250–271Google Scholar
  5. 5.
    Carraro L et al (2004) Macropsis mendax as a vector of elm yellows phytoplasma of Ulmus species. Plant Pathol 53:90–95CrossRefGoogle Scholar
  6. 6.
    Pilkington LJ et al (2004) Reducing the immigration of suspected leafhopper vectors and severity of Australian lucerne yellows disease. Aust J Exp Agric 44:983–992CrossRefGoogle Scholar
  7. 7.
    Rice Mahr SE, Wyman JA, Chapman RK (1993) Variability in aster yellows infectivity of local populations of the aster leafhopper (Homoptera: Cicadellidae) in Wisconsin. J Econ Entomol 86:1522–1526Google Scholar
  8. 8.
    Weintraub PG, Horowitz AR (1996) Spatial and diel activity of the pea leaf miner (Diptera: Agromyzidae) in potatoes, Solanum tuberosum. Environ Entomol 25:722–726Google Scholar
  9. 9.
    Irwin ME et al (2000) Diversity and movement patterns of leaf beetles (Coleoptera: Chrysomelidae) and leafhoppers (Homoptera: Cicadellidae) in a heterogeneous tropical landscape: implications for redressing the integrated pest management paradigm. In: Ekbom B, Irwin ME, Robert Y (eds) Interchanges of insects between agricultural and surrounding landscapes. Kluwer, Dordrecht, The Netherlands, pp 141–168Google Scholar
  10. 10.
    Sharon R et al (2005) Vitex agnus-castus is a preferred host plant for Hyalesthes obsoletus. J Chem Ecol 31:1051–1063PubMedCrossRefGoogle Scholar
  11. 11.
    Gross J, Mekonen N (2005) Plant odours influence the host finding behaviour of apple psyllids (Cacopsylla picta; C. melanoneura). IOBC/WPRS Bull 28(7):351–355Google Scholar
  12. 12.
    Mayer CJ, Vilcinskas A, Gross J (2008) Pathogen-induced release of plant allomone manipulates vector insect behavior. J Chem Ecol 34:1518–1522PubMedCrossRefGoogle Scholar
  13. 13.
    Mayer CJ et al (2009) Cacopsylla melanoneura has no relevance as vector of apple proliferation in Germany. Phytopathology 99:729–738PubMedCrossRefGoogle Scholar
  14. 14.
    Mayer CJ, Vilcinskas A, Gross J (2008) Phytopathogen lures its insect vector by altering host plant odor. J Chem Ecol 34:1045–1049PubMedCrossRefGoogle Scholar
  15. 15.
    Mayer CJ, Vilcinskas A, Gross J (2011) Chemically mediated multitrophic interactions in a plant–insect vector–phytoplasma system compared with a partially nonvector species. Agric For Entomol 13:25–35CrossRefGoogle Scholar
  16. 16.
    Patt JM, Sétamou M (2010) Responses of the Asian citrus psyllid to volatiles emitted by the flushing shoots of its rutaceous host plants. Environ Entomol 39:618–624PubMedCrossRefGoogle Scholar
  17. 17.
    Wenninger EJ, Stelinski LL, Hall DG (2009) Role of olfactory cues, visual cues, and mating status in orientation of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) to four different host plants. Environ Entomol 38: 225–234PubMedCrossRefGoogle Scholar
  18. 18.
    Percy DM, Taylor GS, Kennedy M (2006) Psyllid communication: acoustic diversity, mate recognition and phylogenetic signal. Invertebr Syst 20:431–445CrossRefGoogle Scholar
  19. 19.
    Percy DM, Boyd EA, Hoddle MS (2008) Observations of acoustic signaling in three sharpshooters: Homalodisca vitripennis, Homalodisca liturata, and Graphocephala atropunctata (Hemiptera: Cicadellidae). Ann Entomol Soc Am 101:253–259CrossRefGoogle Scholar
  20. 20.
    Tishechkin DY (2005) Vibrational communication in Psylloidea (Hemiptera). In: Drosopoulos S, Claridge MF (eds) Insects sounds and communication: physiology, behaviour, ecology, and evolution. CRC Taylor & Francis, Boca Raton, FL, pp 358–363Google Scholar
  21. 21.
    Soroker V et al (2004) The role of chemical cues in host and mate location in the pear psylla Cacopsylla bidens (Homoptera: Psyllidae). J Insect Behav 17:613–626CrossRefGoogle Scholar
  22. 22.
    Horton DR, Guédot C, Landolt PJ (2007) Diapause status of females affects attraction of male pear psylla, Cacopsylla pyricola, to volatiles from female-infested pear shoots. Entomol Exp Appl 123:185–192CrossRefGoogle Scholar
  23. 23.
    Horton DR, Landolt PJ (2007) Attraction of male pear psylla, Cacopsylla pyricola, to female-infested pear shoots. Entomol Exp Appl 123:177–183CrossRefGoogle Scholar
  24. 24.
    Wenninger EJ, Stelinski LL, Hall DG (2008) Behavioral evidence for a female-produced sex attractant in Diaphorina citri. Entomol Exp Appl 128:450–459CrossRefGoogle Scholar
  25. 25.
    Guédot CN et al (2009) Identification of a sex attractant pheromone for male winterform pear psylla, Cacopsylla pyricola. J Chem Ecol 35: 1437–1447PubMedCrossRefGoogle Scholar
  26. 26.
    Gross J, Mayer CJ (2010) Nuove prospettive per il monitoraggio e la difusa biomolecolare. Frutta e vite 34:39–41Google Scholar
  27. 27.
    Byers JA (2011) Mass trapping. http://www.chemical-ecology.net/masstrap.htm. Accessed 14 Nov 2011
  28. 28.
    Zada A, Falach L, Byers JA (2009) Development of sol–gel formulations for slow release of pheromones. Chemoecology 19:37–45CrossRefGoogle Scholar
  29. 29.
    El-Sayed AM (2011) The Pherobase: database of insect pheromones and semiochemicals. http://www.pherobase.com. Accessed 14 Nov 2011
  30. 30.
    Müther J, Vogt H (2003) Sampling methods in orchard trials: a comparison between beating and inventory sampling. IOBC/WPRS Bull 26(5):67–72Google Scholar
  31. 31.
    Tholl D et al (2006) Practical approaches to plant volatile analysis. Plant J 45:540–560PubMedCrossRefGoogle Scholar
  32. 32.
    Van Dam NM, Poppy GM (2008) Why plant volatile analysis need bioinformatics—detecting signal from noise in increasingly complex profiles. Plant Biol 10:29–37PubMedCrossRefGoogle Scholar
  33. 33.
    Nehlin G, Valterova I, Borg-Karlson A-K (1994) Use of conifer volatiles to reduce injury caused by carrot psyllid, Trioza apicalis, Förster (Homoptera, Psylloidea). J Chem Ecol 20:771–783CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Gilat Research CenterD.N. NegevIsrael
  2. 2.Federal Research Centre for Cultivated PlantsInstitute for Plant Protection in Fruit Crops and ViticultureDossenheimGermany

Personalised recommendations