Expression Pattern Analysis of MicroRNAs in Caenorhabditis elegans

  • Meltem Isik
  • Eugene BerezikovEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 936)


MicroRNAs (miRNAs) are ∼22 nucleotide single-stranded RNA molecules that originate from hairpin precursors and regulate gene expression at the posttranscriptional level by basepairing with target messenger RNA and blocking its translation or inducing its degradation. miRNAs play important roles in a variety of biological processes, including development, proliferation, differentiation, cell fate determination, apoptosis, signal transduction, host–viral interactions, and tumorigenesis. Methodological advances in miRNA studies allowed identification of biological roles for many miRNAs, and establishing the spatiotemporal expression patterns of miRNAs is one of the approaches to elucidate their biological functions. Expression pattern analysis of miRNAs helps to identify potential genetic interactors that exhibit similar expression patterns and this, combined with further supporting experiments, helps to identify the genetic pathways in which the specific miRNAs are involved. In this chapter, we describe a detailed protocol for the analysis of miRNA expression patterns in Caenorhabditis elegans.

Key words

microRNA Caenorhabditis elegans Expression patterns Functional analysis of miRNAs 


  1. 1.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  2. 2.
    Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289PubMedCrossRefGoogle Scholar
  3. 3.
    Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934PubMedCrossRefGoogle Scholar
  4. 4.
    Martinez NJ, Ow MC, Reece-Hoyes JS, Barrasa MI, Ambros VR, Walhout AJ (2008) Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity. Genome Res 18:2005–2015PubMedCrossRefGoogle Scholar
  5. 5.
    Kato M, Slack FJ (2008) MicroRNAs: small molecules with big roles—C. elegans to human cancer. Biol Cell 100:71–81PubMedCrossRefGoogle Scholar
  6. 6.
    Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB et al (2007) Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet 3:e215PubMedCrossRefGoogle Scholar
  7. 7.
    Brenner JL, Jasiewicz KL, Fahley AF, Kemp BJ, Abbott AL (2010) Loss of individual microRNAs causes mutant phenotypes in sensitized genetic backgrounds in C. elegans. Curr Biol 20:1321–1325PubMedCrossRefGoogle Scholar
  8. 8.
    Aboobaker AA, Tomancak P, Patel N, Rubin GM, Lai EC (2005) Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc Natl Acad Sci USA 102:18017–18022PubMedCrossRefGoogle Scholar
  9. 9.
    Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RH (2005) MicroRNA expression in zebrafish embryonic development. Science 309:310–311PubMedCrossRefGoogle Scholar
  10. 10.
    Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862PubMedCrossRefGoogle Scholar
  11. 11.
    Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864PubMedCrossRefGoogle Scholar
  12. 12.
    Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414PubMedCrossRefGoogle Scholar
  13. 13.
    Ruby JG, Stark A, Johnston WK, Kellis M, Bartel DP, Lai EC (2007) Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res 17:1850–1864PubMedCrossRefGoogle Scholar
  14. 14.
    Hunt-Newbury R, Viveiros R, Johnsen R, Mah A, Anastas D, Fang L, Halfnight E, Lee D, Lin J, Lorch A et al (2007) High-throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLoS Biol 5:e237PubMedCrossRefGoogle Scholar
  15. 15.
    Reece-Hoyes JS, Shingles J, Dupuy D, Grove CA, Walhout AJ, Vidal M, Hope IA (2007) Insight into transcription factor gene duplication from Caenorhabditis elegans promoterome-driven expression patterns. BMC Genomics 8:27PubMedCrossRefGoogle Scholar
  16. 16.
    Boulin T, Etchberger JF, Hobert O (2006) Reporter gene fusions. In: WormBook (ed) The C. elegans Research Community. doi: 10.1895/wormbook.1.106.1,
  17. 17.
    Xiong H, Qian J, He T, Li F (2009) Independent transcription of miR-281 in the intron of ODA in Drosophila melanogaster. Biochem Biophys Res Commun 378:883–889PubMedCrossRefGoogle Scholar
  18. 18.
    Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG, Zhang X, Song JS, Fisher DE (2008) Chromatin structure analyses identify miRNA promoters. Genes Dev 22:3172–3183PubMedCrossRefGoogle Scholar
  19. 19.
    Corcoran DL, Pandit KV, Gordon B, Bhattacharjee A, Kaminski N, Benos PV (2009) Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One 4:e5279PubMedCrossRefGoogle Scholar
  20. 20.
    Wang X, Xuan Z, Zhao X, Li Y, Zhang MQ (2009) High-resolution human core-promoter prediction with CoreBoost_HM. Genome Res 19:266–275PubMedCrossRefGoogle Scholar
  21. 21.
    Isik M, Korswagen HC, Berezikov E (2010) Expression patterns of intronic microRNAs in Caenorhabditis elegans. Silenc 1:5CrossRefGoogle Scholar
  22. 22.
    Evans TC (2006) Transformation and microinjection. In: WormBook (ed) The C. elegans Research Community, WormBook. doi: 10.1895/wormbook.1.108.1,
  23. 23.
    Bio-Rad (1997) Bio-Rad Biolistic® PDS-1000/He Particle Delivery System Instruction Manual, Hercules, CAGoogle Scholar
  24. 24.
    Etchberger JF, Hobert O (2008) Vector-free DNA constructs improve transgene expression in C. elegans. Nat Methods 5:3PubMedCrossRefGoogle Scholar
  25. 25.
    Sivamani E, DeLong RK, Qu R (2009) Protamine-mediated DNA coating remarkably improves bombardment transformation efficiency in plant cells. Plant Cell Rep 28:213–221PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Hubrecht Institute, Royal Netherlands Academy of Arts and SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands

Personalised recommendations