Retinal Degeneration pp 215-226

Part of the Methods in Molecular Biology book series (MIMB, volume 935)

High-Throughput RNA In Situ Hybridization in Mouse Retina



The introduction of large-scale gene expression profiling studies has greatly increased the need to rapidly obtain high-quality cellular expression patterns of genes found to exhibit differential expression. The use of large-scale nonradioactive RNA in situ hybridization makes this possible, and greatly increases the general usefulness of this data. Here, we describe protocols for parallel analysis of up to 50 different gene-specific probes in mouse retinal sections.

Key words

RNA Gene expression Cellular resolution Hybridization Digoxigenin Riboprobe Chromogenic Retina Photoreceptor Development 


  1. 1.
    Jamrich M, Mahon KA, Gavis ER, Gall JG (1984) Histone RNA in amphibian oocytes visualized by in situ hybridization to methacrylate-embedded tissue sections. EMBO J 3:1939–1943PubMedGoogle Scholar
  2. 2.
    Schaeren-Wiemers N, Gerfin-Moser A (1993) A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100:431–440CrossRefPubMedGoogle Scholar
  3. 3.
    Young WS 3rd (1989) Simultaneous use of digoxigenin- and radiolabeled oligodeoxyribonucleotide probes for hybridization histochemistry. Neuropeptides 13:271–275CrossRefPubMedGoogle Scholar
  4. 4.
    Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176CrossRefPubMedGoogle Scholar
  5. 5.
    Blackshaw S, Fraioli RE, Furukawa T, Cepko CL (2001) Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes. Cell 107:579–589CrossRefPubMedGoogle Scholar
  6. 6.
    Blackshaw S, Harpavat S, Trimarchi JM, Cai L, Huang H, Kuo WP, Weber G, Lee K, Fraioli RE, Cho SH et al (2004) Genomic analysis of mouse retinal development. PLoS Biol 2:E247CrossRefPubMedGoogle Scholar
  7. 7.
    Corbo JC, Myers CA, Lawrence KA, Jadhav AP, Cepko CL (2007) A typology of photoreceptor gene expression patterns in the mouse. Proc Natl Acad Sci U S A 104:12069–12074CrossRefPubMedGoogle Scholar
  8. 8.
    Punzo C, Cepko CL (2007) Cellular responses to photoreceptor death in the rd1 mouse model of retinal degeneration. Invest Ophthalmol Vis Sci 48:849–857CrossRefPubMedGoogle Scholar
  9. 9.
    Trimarchi JM, Stadler MB, Cepko CL (2008) Individual retinal progenitor cells display extensive heterogeneity of gene expression. PLoS One 3:e1588CrossRefPubMedGoogle Scholar
  10. 10.
    Trimarchi JM, Stadler MB, Roska B, Billings N, Sun B, Bartch B, Cepko CL (2007) Molecular heterogeneity of developing retinal ganglion and amacrine cells revealed through single cell gene expression profiling. J Comp Neurol 502:1047–1065CrossRefPubMedGoogle Scholar
  11. 11.
    Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap CC, Suzuki M, Kawai J et al (2005) Antisense transcription in the mammalian transcriptome. Science 309:1564–1566CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.The Salomon H. Snyder Department of NeuroscienceJohn Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations