Advertisement

Overactive Bladder Models

  • Roberto Soler
  • Lysanne Campeau
  • Claudius Füllhase
  • Karl-Erik AnderssonEmail author
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

The overactive bladder (OAB) can be defined in humans as a urodynamic observation (detrusor overactivity), or symptomatically (urgency, frequency, incontinence, nocturia) as the OAB syndrome. For obvious reasons, there are no animal models of the OAB syndrome. In humans, urinary incontinence can be due to involuntary bladder contractions demonstrable by cystometry during the filling phase. In animals, cystometric bladder hyperactivity (bladder contractions voluntary and/or involuntary) can be found in many animal models. It can occur spontaneously or be provoked, and the pathophysiology may include both peripheral and central mechanisms. To study bladder hyperactivity in animals, cystometry plays an important role. The present protocol describes the basic cystometry technique and its application in a few animal models specifically used for the study of bladder hyperactivity.

Key words

Overactive bladder Animal models Cystometry Bladder hyperactivity Lower urinary tract 

References

  1. 1.
    Abrams P, Cardozo L, Fall M et al (2002) The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. Neurourol Urodyn 21:167–178PubMedCrossRefGoogle Scholar
  2. 2.
    Hashim H, Abrams P (2006) Is the bladder a reliable witness for predicting detrusor overactivity? J Urol 175(1):191–194PubMedCrossRefGoogle Scholar
  3. 3.
    Andersson KE, Soler R, Füllhase C (2011) Rodent models for urodynamic investigation. Neurourol Urodyn 30(5):636–646PubMedCrossRefGoogle Scholar
  4. 4.
    Persson K, Pandita RK, Spitsbergen JM et al (1998) Spinal and peripheral mechanisms contributing to hyperactive voiding in spontaneously hypertensive rats. Am J Physiol 275: R1366–R1373PubMedGoogle Scholar
  5. 5.
    Jin LH, Andersson KE, Kwon YH et al (2009) Selection of a control rat for conscious spontaneous hypertensive rats in studies of detrusor overactivity on the basis of measurement of intra-abdominal pressures. Neurourol Urodyn 29:1338–1343CrossRefGoogle Scholar
  6. 6.
    Jin LH, Andersson KE, Kwon YH, Yoon SM, Lee T (2010) Selection of a control rat for conscious spontaneous hypertensive rats in studies of detrusor overactivity on the basis of measurement of intra-abdominal pressures. Neurourol Urodyn 29(7):1338–1343PubMedCrossRefGoogle Scholar
  7. 7.
    Lee T, Andersson KE, Streng T, Hedlund P (2008) Simultaneous registration of ­intraabdominal and intravesical pressures ­during cystometry in conscious rats–effects of bladder outlet obstruction and intravesical PGE2. Neurourol Urodyn 27(1):88–95PubMedCrossRefGoogle Scholar
  8. 8.
    Ishizuka O, Mattiasson A, Andersson KE (1995) Prostaglandin E2-induced bladder hyperactivity in normal, conscious rats: involvement of tachykinins? J Urol 153(6):2034–2038PubMedCrossRefGoogle Scholar
  9. 9.
    Schussler B (1990) Comparison of the mode of action of prostaglandin E2 (PGE2) and sulprostone, a PGE2-derivative, on the lower urinary tract in healthy women. A urodynamic study. Urol Res 18:349–352PubMedCrossRefGoogle Scholar
  10. 10.
    Ishizuka O, Mattiasson A, Andersson KE (1995) Urodynamic effects of intravesical resiniferatoxin and capsaicin in conscious rats with and without outflow obstruction. J Urol 154:611–616PubMedCrossRefGoogle Scholar
  11. 11.
    Streng T, Axelsson HE, Hedlund P et al (2008) Distribution and function of the hydrogen sulfide-sensitive TRPA1 ion channel in rat urinary bladder. Eur Urol 53:391–399PubMedCrossRefGoogle Scholar
  12. 12.
    Mitobe M, Inoue H, Westfall TD et al (2008) A new method for producing urinary bladder hyperactivity using a non-invasive transient intravesical infusion of acetic acid in conscious rats. J Pharmacol Toxicol Methods 57:188–193PubMedCrossRefGoogle Scholar
  13. 13.
    Chuang YC, Chancellor MB, Seki S et al (2003) Intravesical protamine sulfate and potassium chloride as a model for bladder hyperactivity. Urology 61:664–670PubMedCrossRefGoogle Scholar
  14. 14.
    Soler R, Bruschini H, Freire MP et al (2008) Urine is necessary to provoke bladder inflammation in protamine sulfate induced urothelial injury. J Urol 180:1527–1531PubMedCrossRefGoogle Scholar
  15. 15.
    Bjorling DE, Elkahwaji JE, Bushman W et al (2007) Acute acrolein-induced cystitis in mice. BJU Int 99:1523–1529PubMedCrossRefGoogle Scholar
  16. 16.
    Juszczak K, Ziomber A, Wyczolkowski M et al (2009) Urodynamic effects of the bladder C-fiber afferent activity modulation in chronic model of overactive bladder in rats. J Physiol Pharmacol 60:85–91PubMedGoogle Scholar
  17. 17.
    Stein PC, Pham H, Ito T et al (1996) Bladder injury model induced in rats by exposure to protamine sulfate followed by bacterial endotoxin. J Urol 155:1133–1138PubMedCrossRefGoogle Scholar
  18. 18.
    Vale JA, Bowsher WG, Liu K et al (1993) Post-irradiation bladder dysfunction: development of a rat model. Urol Res 21:383–388PubMedCrossRefGoogle Scholar
  19. 19.
    Souza-Fiho MV, Lima MV, Pompeu MM, Ballejo G, Cunha FQ, Ribeiro Rde A (1997) Involvement of nitric oxide in the pathogenesis of cyclophosphamide-induced hemorrhagic cystitis. Am J Pathol 150(1):247–256PubMedGoogle Scholar
  20. 20.
    Lantéri-Minet M, Bon K, de Pommery J, Michiels JF, Menétrey D (1995) Cyclophosphamide cystitis as a model of visceral pain in rats: model elaboration and spinal structures involved as revealed by the expression of c-Fos and Krox-24 proteins. Exp Brain Res 105(2):220–232PubMedCrossRefGoogle Scholar
  21. 21.
    Birder LA, de Groat WC (1992) Increased c-fos expression in spinal neurons after irritation of the lower urinary tract in the rat. J Neurosci 12(12):4878–4889PubMedGoogle Scholar
  22. 22.
    Yu Y, Fraser MO, de Groat WC (2004) Effects of ZD6169, a K ATP channel opener, on neurally- mediated plasma extravasation in the rat urinary bladder induced by chemical or electrical stimulation of nerves. Brain Res 996(1):41–46PubMedCrossRefGoogle Scholar
  23. 23.
    Chuang YC, Chancellor MB, Seki S, Yoshimura N, Tyagi P, Huang L, Lavelle JP, De Groat WC, Fraser MO (2003) Intravesical protamine sulfate and potassium chloride as a model for bladder hyperactivity. Urology 61(3): 664–670PubMedCrossRefGoogle Scholar
  24. 24.
    LaBerge J, Malley SE, Zvarova K et al (2006) Expression of corticotropin-releasing factor and CRF receptors in micturition pathways after cyclophosphamide-induced cystitis. Am J Physiol Regul Integr Comp Physiol 291:R692–R703PubMedCrossRefGoogle Scholar
  25. 25.
    Takeda H, Yamazaki Y, Igawa Y, Kaidoh K, Akahane S, Miyata H, Nishizawa O, Akahane M, Andersson KE (2002) Effects of beta(3)-adrenoceptor stimulation on prostaglandin E(2)- induced bladder hyperactivity and on the cardiovascular system in conscious rats. Neurourol Urodyn 21(6):558–565PubMedCrossRefGoogle Scholar
  26. 26.
    Ishizuka O, Igawa Y, Mattiasson A, Andersson KE (1994) Capsaicin-induced bladder hyperactivity in normal conscious rats. J Urol 152(2 Pt 1):525–530PubMedGoogle Scholar
  27. 27.
    Rahman NU, Phonsombat S, Bochinski D, Carrion RE, Nunes L, Lue TF (2007) An animal model to study lower urinary tract symptoms and erectile dysfunction: the hyperlipidaemic rat. BJU Int 100(3):658–663PubMedCrossRefGoogle Scholar
  28. 28.
    Son H, Lee SL, Park WH, Park K, Park S, Kang MS, Kim DY, Kim SW, Paick JS (2007) New unstable bladder model in hypercholesterolemia rats. Urology 69(1):186–190PubMedCrossRefGoogle Scholar
  29. 29.
    Azadzoi KM, Tarcan T, Kozlowski R, Krane RJ, Siroky MB (1999) Overactivity and structural changes in the chronically ischemic bladder. J Urol 162(5):1768–1778PubMedCrossRefGoogle Scholar
  30. 30.
    Azadzoi KM, Yalla SV, Siroky MB (2007) Oxidative stress and neurodegeneration in the ischemic overactive bladder. J Urol 178(2): 710–715PubMedCrossRefGoogle Scholar
  31. 31.
    Park K, Son H, Kim SW, Paick JS (2005) Initial validation of a novel rat model of vasculogenic erectile dysfunction with generalized atherosclerosis. Int J Impot Res 17(5):424–430PubMedCrossRefGoogle Scholar
  32. 32.
    Daneshgari F, Leiter EH, Liu G, Reeder J (2009) Animal models of diabetic uropathy. J Urol 182(6 Suppl):S8–S13PubMedCrossRefGoogle Scholar
  33. 33.
    Janssen U, Phillips AO, Floege J (1999) Rodent models of nephropathy associated with type II diabetes. J Nephrol 12(3):159–172PubMedGoogle Scholar
  34. 34.
    Gasbarro G, Lin DL, Vurbic D, Quisno A, Kinley B, Daneshgari F, Damaser MS (2010) Voiding function in obese and type 2 diabetic female rats. Am J Physiol Renal Physiol 298(1):F72–F77PubMedCrossRefGoogle Scholar
  35. 35.
    Oelke M, Baard J, Wijkstra H et al (2008) Age and bladder outlet obstruction are independently associated with detrusor overactivity in patients with benign prostatic hyperplasia. Eur Urol 54:419–426PubMedCrossRefGoogle Scholar
  36. 36.
    Malmgren A, Sjögren C, Uvelius B, Mattiasson A, Andersson KE, Andersson PO (1987) Cystometrical evaluation of bladder instability in rats with infravesical outflow obstruction. J Urol 137(6):1291–1294PubMedGoogle Scholar
  37. 37.
    Mostwin JL, Karim OM, Van Koeveringe G, Seki N (1994) Guinea pig as an animal model for the study of urinary bladder function in the normal and obstructed state. Neurourol Urodyn 13(2):137–145PubMedCrossRefGoogle Scholar
  38. 38.
    Pandita RK, Fujiwara M, Alm P, Andersson KE (2000) Cystometric evaluation of bladder function in non-anesthetized mice with and without bladder outlet obstruction. J Urol 164(4):1385–1389PubMedCrossRefGoogle Scholar
  39. 39.
    Saito M, Miyagawa I (2001) Bladder dysfunction after acute urinary retention in rats. J Urol 165:1745–1747PubMedCrossRefGoogle Scholar
  40. 40.
    Melman A, Tar M, Boczko J et al (2005) Evaluation of two techniques of partial urethral obstruction in the male rat model of bladder outlet obstruction. Urology 66:1127–1133PubMedCrossRefGoogle Scholar
  41. 41.
    Schroder A, Uvelius B, Newgreen D et al (2003) Bladder overactivity in mice after 1 week of outlet obstruction. Mainly afferent dysfunction? J Urol 170:1017–1021PubMedCrossRefGoogle Scholar
  42. 42.
    de Groat WC, Yoshimura N (2010) Changes in afferent activity after spinal cord injury. Neurourol Urodyn 29:63–76PubMedCrossRefGoogle Scholar
  43. 43.
    Noto H, Roppolo JR, Steers WD et al (1991) Electrophysiological analysis of the ascending and descending components of the micturition reflex pathway in the rat. Brain Res 549: 95–105PubMedCrossRefGoogle Scholar
  44. 44.
    Pikov V, Gillis RA, Jasmin L et al (1998) Assessment of lower urinary tract functional deficit in rats with contusive spinal cord injury. J Neurotrauma 15:375–386PubMedCrossRefGoogle Scholar
  45. 45.
    Pikov V, Wrathall JR (2002) Altered glutamate receptor function during recovery of bladder detrusor-external urethral sphincter coordination in a rat model of spinal cord injury. J Pharmacol Exp Ther 300:421–427PubMedCrossRefGoogle Scholar
  46. 46.
    Pikov V, Wrathall JR (2001) Coordination of the bladder detrusor and the external urethral sphincter in a rat model of spinal cord injury: effect of injury severity. J Neurosci 21:559–569PubMedGoogle Scholar
  47. 47.
    Araki I, Kitahara M, Oida T et al (2000) Voiding dysfunction and Parkinson’s disease: urodynamic abnormalities and urinary symptoms. J Urol 164:1640–1643PubMedCrossRefGoogle Scholar
  48. 48.
    Fowler CJ (2007) Update on the neurology of Parkinson’s disease. Neurourol Urodyn 26:103–109PubMedCrossRefGoogle Scholar
  49. 49.
    Sammour ZM, Gomes CM, Barbosa ER et al (2009) Voiding dysfunction in patients with Parkinson’s disease: impact of neurological impairment and clinical parameters. Neurourol Urodyn 28:510–515PubMedCrossRefGoogle Scholar
  50. 50.
    Seki S, Igawa Y, Kaidoh K et al (2001) Role of dopamine D1 and D2 receptors in the micturition reflex in conscious rats. Neurourol Urodyn 20:105–113PubMedCrossRefGoogle Scholar
  51. 51.
    Yoshimura N, Kuno S, Chancellor MB, De Groat WC, Seki S (2003) Dopaminergic mechanisms underlying bladder hyperactivity in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway. Br J Pharmacol 139(8):1425–1432PubMedCrossRefGoogle Scholar
  52. 52.
    Yokoyama O, Mizuno H, Komatsu K et al (2004) Role of glutamate receptors in the development and maintenance of bladder overactivity after cerebral infarction in the rat. J Urol 171:1709–1714PubMedCrossRefGoogle Scholar
  53. 53.
    Soler R, Füllhase C, Santos C, Andersson KE (2011) Development of bladder dysfunction in a rat model of dopaminergic brain lesion. Neurourol Urodyn 30(1):188–193PubMedCrossRefGoogle Scholar
  54. 54.
    Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates – the new coronal set, 5th edn. Academic, New YorkGoogle Scholar
  55. 55.
    Yotsuyanagi S, Yokoyama O, Komatsu K et al (2005) Role of cyclooxygenase-2 in the development of bladder overactivity after cerebral infarction in the rat. J Urol 174:365–369PubMedCrossRefGoogle Scholar
  56. 56.
    Kodama K, Yokoyama O, Komatsu K et al (2002) Contribution of cerebral nitric oxide to bladder overactivity after cerebral infarction in rats. J Urol 167:391–396PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Roberto Soler
    • 1
    • 2
  • Lysanne Campeau
    • 1
  • Claudius Füllhase
    • 3
  • Karl-Erik Andersson
    • 1
    Email author
  1. 1.Wake Forest Institute for Regenerative MedicineWake Forest UniversityWinston-SalemUSA
  2. 2.Division of UrologyFederal University of Sao PauloSão PauloBrazil
  3. 3.Department of UrologyUniversity Hospital Groβhadern, Ludwig-Maximilians-University MunichMunichGermany

Personalised recommendations