The Non-Obese Diabetic (NOD) Mouse as a Model of Human Type 1 Diabetes

  • Kritika Kachapati
  • David Adams
  • Kyle Bednar
  • William M. Ridgway
Part of the Methods in Molecular Biology book series (MIMB, volume 933)


The non-obese diabetic (NOD) mouse spontaneously develops type 1 diabetes (T1D) and has thus served as a model for understanding the genetic and immunological basis, and treatment, of T1D. Since its initial description in 1980, however, the field has matured and recognized that prevention of diabetes in NOD mice (i.e., preventing the disease from occurring by an intervention prior to frank diabetes) is relatively easy to achieve and does not correlate well with curing the disease (after the onset of frank hyperglycemia). Hundreds of papers have described the prevention of diabetes in NOD mice but only a handful have described its actual reversal. The paradoxical conclusion is that preventing the disease in NOD mice does not necessarily tell us what caused the disease nor how to reverse it. The NOD mouse model is therefore best used now, with respect to human disease, as a way to understand the genetic and immunologic causes of and as a model for trying to reverse disease once hyperglycemia occurs. We describe how genetic approaches to identifying causative gene variants can be adapted to identify novel therapeutic agents for reversing new-onset T1D.

Key words

NOD mouse Type 1 diabetes Prevention of diabetes Autoimmune Quantitative trait loci Insulin-dependent diabetes loci (iddMHC genes CD137 CTLA4 


  1. 1.
    Driver JP, Serreze DV, Chen YG (2011) Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease. Semin Immunopathol 33:67–87PubMedCrossRefGoogle Scholar
  2. 2.
    Thayer TC, Wilson SB, Mathews CE (2010) Use of nonobese diabetic mice to understand human type 1 diabetes. Endocrinol Metab Clin North Am 39:541–561PubMedCrossRefGoogle Scholar
  3. 3.
    Wicker LS, Clark J, Fraser HI, Garner VE, Gonzalez-Munoz A, Healy B, Howlett S, Hunter K, Rainbow D, Rosa RL, Smink LJ, Todd JA, Peterson LB (2005) Type 1 diabetes genes and pathways shared by humans and NOD mice. J Autoimmun 25(Suppl):29–33PubMedCrossRefGoogle Scholar
  4. 4.
    Ridgway WM, Peterson LB, Todd JA, Rainbow DB, Healy B, Burren OS, Wicker LS (2008) Gene-gene interactions in the NOD mouse model of type 1 diabetes. Adv Immunol 100:151–175PubMedCrossRefGoogle Scholar
  5. 5.
    Culina S, Boitard C, Mallone R (2011) Antigen-based immune therapeutics for type 1 diabetes: magic bullets or ordinary blanks? Clin Dev Immunol 2011:286248PubMedCrossRefGoogle Scholar
  6. 6.
    Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464:1293–1300PubMedCrossRefGoogle Scholar
  7. 7.
    Oikawa Y, Shimada A, Yamada Y, Okubo Y, Katsuki T, Shigihara T, Miyazaki J, Narumi S, Itoh H (2010) CXC chemokine ligand 10 DNA vaccination plus Complete Freund’s Adjuvant reverses hyperglycemia in non-obese diabetic mice. Rev Diabet Stud 7:209–224PubMedGoogle Scholar
  8. 8.
    Tarbell KV, Petit L, Zuo X, Toy P, Luo X, Mqadmi A, Yang H, Suthanthiran M, Mojsov S, Steinman RM (2007) Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L  +  regulatory T cells restore normoglycemia in diabetic NOD mice. J Exp Med 204:191–201PubMedCrossRefGoogle Scholar
  9. 9.
    Fiorina P, Vergani A, Dada S, Jurewicz M, Wong M, Law K, Wu E, Tian Z, Abdi R, Guleria I, Rodig S, Dunussi-Joannopoulos K, Bluestone J, Sayegh MH (2008) Targeting CD22 reprograms B-cells and reverses autoimmune diabetes. Diabetes 57:3013–3024PubMedCrossRefGoogle Scholar
  10. 10.
    Parker MJ, Xue S, Alexander JJ, Wasserfall CH, Campbell-Thompson ML, Battaglia M, Gregori S, Mathews CE, Song S, Troutt M, Eisenbeis S, Williams J, Schatz DA, Haller MJ, Atkinson MA (2009) Immune depletion with cellular mobilization imparts immunoregulation and reverses autoimmune diabetes in nonobese diabetic mice. Diabetes 58:2277–2284PubMedCrossRefGoogle Scholar
  11. 11.
    Hu CY, Rodriguez-Pinto D, Du W, Ahuja A, Henegariu O, Wong FS, Shlomchik MJ, Wen L (2007) Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. J Clin Invest 117:3857–3867PubMedCrossRefGoogle Scholar
  12. 12.
    Nikolic B, Takeuchi Y, Leykin I, Fudaba Y, Smith RN, Sykes M (2004) Mixed hematopoietic chimerism allows cure of autoimmune diabetes through allogeneic tolerance and reversal of autoimmunity. Diabetes 53:376–383PubMedCrossRefGoogle Scholar
  13. 13.
    Jurewicz M, Yang S, Augello A, Godwin JG, Moore RF, Azzi J, Fiorina P, Atkinson M, Sayegh MH, Abdi R (2010) Congenic mesenchymal stem cell therapy reverses hyperglycemia in experimental type 1 diabetes. Diabetes 59:3139–3147PubMedCrossRefGoogle Scholar
  14. 14.
    Tian L, Gao J, Hao J, Zhang Y, Yi H, O’Brien TD, Sorenson R, Luo J, Guo Z (2010) Reversal of new-onset diabetes through modulating inflammation and stimulating beta-cell replication in nonobese diabetic mice by a dipeptidyl peptidase IV inhibitor. Endocrinology 151:3049–3060PubMedCrossRefGoogle Scholar
  15. 15.
    Suarez-Pinzon WL, Power RF, Yan Y, Wasserfall C, Atkinson M, Rabinovitch A (2008) Combination therapy with glucagon-like peptide-1 and gastrin restores normoglycemia in diabetic NOD mice. Diabetes 57:3281–3288PubMedCrossRefGoogle Scholar
  16. 16.
    Grinberg-Bleyer Y, Baeyens A, You S, Elhage R, Fourcade G, Gregoire S, Cagnard N, Carpentier W, Tang Q, Bluestone J, Chatenoud L, Klatzmann D, Salomon BL, Piaggio E (2010) IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med 207:1871–1878PubMedCrossRefGoogle Scholar
  17. 17.
    Koulmanda M, Bhasin M, Hoffman L, Fan Z, Qipo A, Shi H, Bonner-Weir S, Putheti P, Degauque N, Libermann TA, Auchincloss H Jr, Flier JS, Strom TB (2008) Curative and beta cell regenerative effects of alpha1-antitrypsin treatment in autoimmune diabetic NOD mice. Proc Natl Acad Sci U S A 105:16242–16247PubMedCrossRefGoogle Scholar
  18. 18.
    Bresson D, Fradkin M, Manenkova Y, Rottembourg D, von Herrath M (2010) Genetic-induced variations in the GAD65 T-cell repertoire governs efficacy of anti-CD3/GAD65 combination therapy in new-onset type 1 diabetes. Mol Ther 18:307–316PubMedCrossRefGoogle Scholar
  19. 19.
    Godebu E, Summers-Torres D, Lin MM, Baaten BJ, Bradley LM (2008) Polyclonal adaptive regulatory CD4 cells that can reverse type I diabetes become oligoclonal long-term protective memory cells. J Immunol 181:1798–1805PubMedGoogle Scholar
  20. 20.
    Louvet C, Szot GL, Lang J, Lee MR, Martinier N, Bollag G, Zhu S, Weiss A, Bluestone JA (2008) Tyrosine kinase inhibitors reverse type 1 diabetes in nonobese diabetic mice. Proc Natl Acad Sci U S A 105:18895–18900PubMedCrossRefGoogle Scholar
  21. 21.
    Hoglund P, Mintern J, Waltzinger C, Heath W, Benoist C, Mathis D (1999) Initiation of autoimmune diabetes by developmentally regulated presentation of islet cell antigens in the pancreatic lymph nodes. J Exp Med 189:331–339PubMedCrossRefGoogle Scholar
  22. 22.
    Rosmalen JG, Leenen PJ, Katz JD, Voerman JS, Drexhage HA (1997) Dendritic cells in the autoimmune insulitis in NOD mouse models of diabetes. Adv Exp Med Biol 417:291–294PubMedGoogle Scholar
  23. 23.
    Saxena V, Ondr JK, Magnusen AF, Munn DH, Katz JD (2007) The countervailing actions of myeloid and plasmacytoid dendritic cells control autoimmune diabetes in the nonobese diabetic mouse. J Immunol 179:5041–5053PubMedGoogle Scholar
  24. 24.
    Wong FS, Janeway CA Jr (1997) The role of CD4 and CD8 T cells in type I diabetes in the NOD mouse. Res Immunol 148:327–332PubMedCrossRefGoogle Scholar
  25. 25.
    Ziegler AG, Nepom GT (2010) Prediction and pathogenesis in type 1 diabetes. Immunity 32:468–478PubMedCrossRefGoogle Scholar
  26. 26.
    Mueller DL (2003) Tuning the immune ­system: competing positive and negative feedback loops. Nat Immunol 4:210–211PubMedCrossRefGoogle Scholar
  27. 27.
    Shoda LK, Young DL, Ramanujan S, Whiting CC, Atkinson MA, Bluestone JA, Eisenbarth GS, Mathis D, Rossini AA, Campbell SE, Kahn R, Kreuwel HT (2005) A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity 23:115–126PubMedCrossRefGoogle Scholar
  28. 28.
    Roep BO, Atkinson M, von Herrath M (2004) Satisfaction (not) guaranteed: re-evaluating the use of animal models of type 1 diabetes. Nat Rev Immunol 4:989–997PubMedCrossRefGoogle Scholar
  29. 29.
    Atkinson MA, Leiter EH (1999) The NOD mouse model of type 1 diabetes: as good as it gets? Nat Med 5:601–604PubMedCrossRefGoogle Scholar
  30. 30.
    Wicker LS, Todd JA, Peterson LB (1995) Genetic control of autoimmune diabetes in the NOD mouse. Annu Rev Immunol 13:179–200PubMedCrossRefGoogle Scholar
  31. 31.
    Wicker LS, Miller BJ, Coker LZ, McNally SE, Scott S, Mullen Y, Appel MC (1987) Genetic control of diabetes and insulitis in the nonobese diabetic (NOD) mouse. J Exp Med 165:1639–1654PubMedCrossRefGoogle Scholar
  32. 32.
    Todd JA, Aitman TJ, Cornall RJ, Ghosh S, Hall JR, Hearne CM, Knight AM, Love JM, McAleer MA, Prins JB et al (1991) Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature 351:542–547PubMedCrossRefGoogle Scholar
  33. 33.
    Burren OS, Adlem EC, Achuthan P, Christensen M, Coulson RM, Todd JA (2011) T1DBase: update 2011, organization and presentation of large-scale data sets for type 1 diabetes research. Nucleic Acids Res 39:D997–D1001PubMedCrossRefGoogle Scholar
  34. 34.
    Ridgway WM, Healy B, Smink LJ, Rainbow D, Wicker LS (2007) New tools for defining the ‘genetic background’ of inbred mouse strains. Nat Immunol 8:669–673PubMedCrossRefGoogle Scholar
  35. 35.
    Lyons PA, Hancock WW, Denny P, Lord CJ, Hill NJ, Armitage N, Siegmund T, Todd JA, Phillips MS, Hess JF, Chen SL, Fischer PA, Peterson LB, Wicker LS (2000) The NOD Idd9 genetic interval influences the pathogenicity of insulitis and contains molecular variants of Cd30, Tnfr2, and Cd137. Immunity 13:107–115PubMedCrossRefGoogle Scholar
  36. 36.
    Cannons JL, Chamberlain G, Howson J, Smink LJ, Todd JA, Peterson LB, Wicker LS, Watts TH (2005) Genetic and functional association of the immune signaling molecule 4-1BB (CD137/TNFRSF9) with type 1 diabetes. J Autoimmun 25(1):13–20PubMedCrossRefGoogle Scholar
  37. 37.
    Podolin PL, Wilusz MB, Cubbon RM, Pajvani U, Lord CJ, Todd JA, Peterson LB, Wicker LS, Lyons PA (2000) Differential glycosylation of interleukin 2, the molecular basis for the NOD Idd3 type 1 diabetes gene? Cytokine 12:477–482PubMedCrossRefGoogle Scholar
  38. 38.
    Kamanaka M, Rainbow D, Schuster-Gossler K, Eynon EE, Chervonsky AV, Wicker LS, Flavell RA (2009) Amino acid polymorphisms altering the glycosylation of IL-2 do not protect from type 1 diabetes in the NOD mouse. Proc Natl Acad Sci U S A 106:11236–11240PubMedCrossRefGoogle Scholar
  39. 39.
    Yamanouchi J, Rainbow D, Serra P, Howlett S, Hunter K, Garner VE, Gonzalez-Munoz A, Clark J, Veijola R, Cubbon R, Chen SL, Rosa R, Cumiskey AM, Serreze DV, Gregory S, Rogers J, Lyons PA, Healy B, Smink LJ, Todd JA, Peterson LB, Wicker LS, Santamaria P (2007) Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat Genet 39:329–337PubMedCrossRefGoogle Scholar
  40. 40.
    Rainbow DB, Esposito L, Howlett SK, Hunter KM, Todd JA, Peterson LB, Wicker LS (2008) Commonality in the genetic control of Type 1 diabetes in humans and NOD mice: variants of genes in the IL-2 pathway are associated with autoimmune diabetes in both species. Biochem Soc Trans 36:312–315PubMedCrossRefGoogle Scholar
  41. 41.
    Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, Rainbow DB, Hunter KM, Smith AN, Di Genova G, Herr MH, Dahlman I, Payne F, Smyth D, Lowe C, Twells RC, Howlett S, Healy B, Nutland S, Rance HE, Everett V, Smink LJ, Lam AC, Cordell HJ, Walker NM, Bordin C, Hulme J, Motzo C, Cucca F, Hess JF, Metzker ML, Rogers J, Gregory S, Allahabadia A, Nithiyananthan R, Tuomilehto-Wolf E, Tuomilehto J, Bingley P, Gillespie KM, Undlien DE, Ronningen KS, Guja C, Ionescu-Tirgoviste C, Savage DA, Maxwell AP, Carson DJ, Patterson CC, Franklyn JA, Clayton DG, Peterson LB, Wicker LS, Todd JA, Gough SC (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511PubMedCrossRefGoogle Scholar
  42. 42.
    Gerold KD, Zheng P, Rainbow DB, Zernecke A, Wicker LS, Kissler S (2011) The soluble CTLA-4 splice variant protects from type 1 diabetes and potentiates regulatory T-cell function. Diabetes 60:1955–1963PubMedCrossRefGoogle Scholar
  43. 43.
    Wicker LS, Chamberlain G, Hunter K, Rainbow D, Howlett S, Tiffen P, Clark J, Gonzalez-Munoz A, Cumiskey AM, Rosa RL, Howson JM, Smink LJ, Kingsnorth A, Lyons PA, Gregory S, Rogers J, Todd JA, Peterson LB (2004) Fine mapping, gene content, comparative sequencing, and expression analyses support Ctla4 and Nramp1 as candidates for Idd5.1 and Idd5.2 in the nonobese diabetic mouse. J Immunol 173:164–173PubMedGoogle Scholar
  44. 44.
    Vijayakrishnan L, Slavik JM, Illes Z, Greenwald RJ, Rainbow D, Greve B, Peterson LB, Hafler DA, Freeman GJ, Sharpe AH, Wicker LS, Kuchroo VK (2004) An autoimmune disease-associated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity 20:563–575PubMedCrossRefGoogle Scholar
  45. 45.
    Irie J, Wu Y, Kachapati K, Mittler RS, Ridgway WM (2007) Modulating protective and pathogenic CD4+ subsets via CD137 in type 1 diabetes. Diabetes 56:186–196PubMedCrossRefGoogle Scholar
  46. 46.
    Maier LM, Smyth DJ, Vella A, Payne F, Cooper JD, Pask R, Lowe C, Hulme J, Smink LJ, Fraser H, Moule C, Hunter KM, Chamberlain G, Walker N, Nutland S, Undlien DE, Ronningen KS, Guja C, Ionescu-Tirgoviste C, Savage DA, Strachan DP, Peterson LB, Todd JA, Wicker LS, Twells RC (2005) Construction and analysis of tag single nucleotide polymorphism maps for six human-mouse orthologous candidate genes in type 1 diabetes. BMC Genet 6:9PubMedCrossRefGoogle Scholar
  47. 47.
    Fung EY, Smyth DJ, Howson JM, Cooper JD, Walker NM, Stevens H, Wicker LS, Todd JA (2009) Analysis of 17 autoimmune disease-associated variants in type 1 diabetes identifies 6q23/TNFAIP3 as a susceptibility locus. Genes Immun 10:188–191PubMedCrossRefGoogle Scholar
  48. 48.
    Li L, Soetandyo N, Wang Q, Ye Y (2009) The zinc finger protein A20 targets TRAF2 to the lysosomes for degradation. Biochim Biophys Acta 1793:346–353PubMedCrossRefGoogle Scholar
  49. 49.
    Watts TH (2005) TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 23:23–68PubMedCrossRefGoogle Scholar
  50. 50.
    Pollok KE, Kim YJ, Zhou Z, Hurtado J, Kim KK, Pickard RT, Kwon BS (1993) Inducible T cell antigen 4-1BB. Analysis of expression and function. J Immunol 150:771–781PubMedGoogle Scholar
  51. 51.
    Vinay DS, Kwon BS (1998) Role of 4-1BB in immune responses. Semin Immunol 10:481–489PubMedCrossRefGoogle Scholar
  52. 52.
    Croft M (2003) Costimulation of T cells by OX40, 4-1BB, and CD27. Cytokine Growth Factor Rev 14:265–273PubMedCrossRefGoogle Scholar
  53. 53.
    Croft M (2003) Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat Rev Immunol 3:609–620PubMedCrossRefGoogle Scholar
  54. 54.
    Foell J, McCausland M, Burch J, Corriazzi N, Yan XJ, Suwyn C, O’Neil SP, Hoffmann MK, Mittler RS (2003) CD137-mediated T cell co-stimulation terminates existing autoimmune disease in SLE-prone NZB/NZW F1 mice. Ann N Y Acad Sci 987:230–235PubMedCrossRefGoogle Scholar
  55. 55.
    Fukushima A, Yamaguchi T, Ishida W, Fukata K, Mittler RS, Yagita H, Ueno H (2005) Engagement of 4-1BB inhibits the development of experimental allergic conjunctivitis in mice. J Immunol 175:4897–4903PubMedGoogle Scholar
  56. 56.
    Sun Y, Lin X, Chen HM, Wu Q, Subudhi SK, Chen L, Fu YX (2002) Administration of ­agonistic anti-4-1BB monoclonal antibody leads to the amelioration of experimental autoimmune encephalomyelitis. J Immunol 168:1457–1465PubMedGoogle Scholar
  57. 57.
    Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD, Levine SS, Fraenkel E, von Boehmer H, Young RA (2007) Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445:931–935PubMedCrossRefGoogle Scholar
  58. 58.
    Chen Z, Herman AE, Matos M, Mathis D, Benoist C (2005) Where CD4  +  CD25+ T reg cells impinge on autoimmune diabetes. J Exp Med 202:1387–1397PubMedCrossRefGoogle Scholar
  59. 59.
    Bertram EM, Lau P, Watts TH (2002) Temporal segregation of 4-1BB versus CD28-mediated costimulation: 4-1BB ligand influences T cell numbers late in the primary response and regulates the size of the T cell memory response following influenza infection. J Immunol 168:3777–3785PubMedGoogle Scholar
  60. 60.
    Lee HW, Park SJ, Choi BK, Kim HH, Nam KO, Kwon BS (2002) 4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J Immunol 169:4882–4888PubMedGoogle Scholar
  61. 61.
    Kim J, Choi SP, La S, Seo JS, Kim KK, Nam SH, Kwon B (2003) Constitutive expression of 4-1BB on T cells enhances CD4+ T cell responses. Exp Mol Med 35:509–517PubMedGoogle Scholar
  62. 62.
    Setareh M, Schwarz H, Lotz M (1995) A mRNA variant encoding a soluble form of 4-1BB, a member of the murine NGF/TNF receptor family. Gene 164:311–315PubMedCrossRefGoogle Scholar
  63. 63.
    Schwarz H, Blanco FJ, von Kempis J, Valbracht J, Lotz M (1996) ILA, a member of the human nerve growth factor/tumor necrosis factor receptor family, regulates T-lymphocyte proliferation and survival. Blood 87:2839–2845PubMedGoogle Scholar
  64. 64.
    Shao Z, Sun F, Koh DR, Schwarz H (2008) Characterisation of soluble murine CD137 and its association with systemic lupus. Mol Immunol 45:3990–3999PubMedCrossRefGoogle Scholar
  65. 65.
    Michel J, Schwarz H (2000) Expression of soluble CD137 correlates with activation-induced cell death of lymphocytes. Cytokine 12:742–746PubMedCrossRefGoogle Scholar
  66. 66.
    Middendorp S, Xiao Y, Song JY, Peperzak V, Krijger PH, Jacobs H, Borst J (2009) Mice deficient for CD137 ligand are predisposed to develop germinal center-derived B-cell lymphoma. Blood 114:2280–2289PubMedCrossRefGoogle Scholar
  67. 67.
    Lennon GP, Bettini M, Burton AR, Vincent E, Arnold PY, Santamaria P, Vignali DA (2009) T cell islet accumulation in type 1 diabetes is a tightly regulated, cell-autonomous event. Immunity 31:643–653PubMedCrossRefGoogle Scholar
  68. 68.
    Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF, Vignali DA (2004) Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 22:589–594PubMedCrossRefGoogle Scholar
  69. 69.
    Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998) Development of a self-inactivating lentivirus vector. J Virol 72:8150–8157PubMedGoogle Scholar
  70. 70.
    Weber K, Bartsch U, Stocking C, Fehse B (2008) A multicolor panel of novel lentiviral “gene ontology” (LeGO) vectors for functional gene analysis. Mol Ther 16:698–706PubMedCrossRefGoogle Scholar
  71. 71.
    Follenzi A, Santambrogio L, Annoni A (2007) Immune responses to lentiviral vectors. Curr Gene Ther 7:306–315PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Kritika Kachapati
    • 1
  • David Adams
    • 1
  • Kyle Bednar
    • 1
  • William M. Ridgway
    • 1
  1. 1.Division of Immunology, Allergy, and RheumatologyUniversity of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations