MALDI Imaging Mass Spectrometry for Direct Tissue Analysis

  • Stephan Meding
  • Axel WalchEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 931)


MALDI (Matrix-Assisted Laser Desorption/Ionization) Imaging mass spectrometry is a powerful new method for analyzing the spatial distribution of molecules in tissues. Several different classes of cellular constituents such as proteins, peptides, lipids, and small molecules can be analyzed in situ while maintaining the morphological integrity of the tissue. This allows a correlation of the morphology with the previously acquired molecular patterns. By this, specific molecules can be clearly assigned to their cellular origin. Here, we will present a protocol for the analysis of proteins in tissues which are either native or alcohol-fixed and paraffin-embedded.

Key words

MALDI Imaging Imaging mass spectrometry In situ proteomics Tissue proteomics Morphology-based tissue analysis 



AW acknowledges the financial support by the German Federal Ministry of Education and Research (BMBF) within the SysTec Initiative (IMAGING, 0315508A), the MoBiMed Initiative (EndoMed, 01EZ0803) and the MoBiTech Initiative (MALDI-AMK, 01IB10004E).


  1. 1.
    Heeren RMA et al (2009) Imaging mass spectrometry: hype or hope? J Am Soc Mass Spectrom 20:1006–1014PubMedCrossRefGoogle Scholar
  2. 2.
    Schwamborn K, Caprioli RM (2010) MALDI imaging mass spectrometry–painting molecular pictures. Mol Oncol 4:529–538PubMedCrossRefGoogle Scholar
  3. 3.
    Seeley EH, Caprioli RM (2011) MALDI imaging mass spectrometry of human tissue: method challenges and clinical perspectives. Trends Biotechnol 29:136–143PubMedCrossRefGoogle Scholar
  4. 4.
    Balluff B et al (2011) MALDI imaging mass spectrometry for direct tissue analysis: technological advancements and recent applications. Histochem Cell Biol 136:227–244PubMedCrossRefGoogle Scholar
  5. 5.
    Amstalden van Hove ER et al (2010) Multimodal mass spectrometric imaging of small molecules reveals distinct spatio-molecular signatures in differentially metastatic breast tumor models. Cancer Res 70:9012–9021PubMedCrossRefGoogle Scholar
  6. 6.
    Burnum KE et al (2009) Spatial and temporal alterations of phospholipids determined by mass spectrometry during mouse embryo implantation. J Lipid Res 50:2290–2298PubMedCrossRefGoogle Scholar
  7. 7.
    Marko-Varga G et al (2011) Drug localization in different lung cancer phenotypes by MALDI mass spectrometry imaging. J Proteomics 74:982–992PubMedCrossRefGoogle Scholar
  8. 8.
    Prideaux B et al (2011) High-sensitivity MALDI-MRM-MS imaging of moxifloxacin distribution in tuberculosis-infected rabbit lungs and granulomatous lesions. Anal Chem 83:2112–2118PubMedCrossRefGoogle Scholar
  9. 9.
    Djidja MC et al (2009) MALDI-ion mobility separation-mass spectrometry imaging of glucose-regulated protein 78 kDa (Grp78) in human formalin-fixed, paraffin-embedded pancreatic adenocarcinoma tissue sections. J Proteome Res 8:4876–4884PubMedCrossRefGoogle Scholar
  10. 10.
    Groseclose MR et al (2008) High-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using MALDI imaging mass spectrometry. Proteomics 8:3715–3724PubMedCrossRefGoogle Scholar
  11. 11.
    Gustafsson JO et al (2010) Citric acid antigen retrieval (CAAR) for tryptic peptide imaging directly on archived formalin-fixed paraffin-embedded tissue. J Proteome Res 9:4315–4328PubMedCrossRefGoogle Scholar
  12. 12.
    Lemaire R et al (2007) Direct analysis and MALDI imaging of formalin-fixed, paraffin-embedded tissue sections. J Proteome Res 6:1295–1305PubMedCrossRefGoogle Scholar
  13. 13.
    Stauber J et al (2010) On-tissue protein identification and imaging by MALDI-ion mobility mass spectrometry. J Am Soc Mass Spectrom 21:338–347PubMedCrossRefGoogle Scholar
  14. 14.
    Balluff B et al (2010) Classification of HER2/neu status in gastric cancer using a breast-cancer derived proteome classifier. J Proteome Res 9:6317–6322PubMedCrossRefGoogle Scholar
  15. 15.
    Lagarrigue M et al (2010) Revisiting rat spermatogenesis with MALDI imaging at 20 μm resolution. Mol Cell Proteomics 10:M110 005991Google Scholar
  16. 16.
    Meistermann H et al (2006) Biomarker ­discovery by imaging mass spectrometry: ­transthyretin is a biomarker for gentamicin-induced nephrotoxicity in rat. Mol Cell Proteomics 5:1876–1886PubMedCrossRefGoogle Scholar
  17. 17.
    Rauser S et al (2010) Classification of HER2 receptor status in breast cancer tissues by MALDI imaging mass spectrometry. J Proteome Res 9:1854–1863PubMedCrossRefGoogle Scholar
  18. 18.
    Yanagisawa K et al (2003) Proteomic patterns of tumour subsets in non-small-cell lung cancer. Lancet 362:433–439PubMedCrossRefGoogle Scholar
  19. 19.
    Franck J et al (2010) MALDI mass ­spectrometry imaging of proteins exceeding 30,000 daltons. Med Sci Monit 16:BR293–BR299PubMedGoogle Scholar
  20. 20.
    Deininger SO et al (2008) MALDI imaging combined with hierarchical clustering as a new tool for the interpretation of complex human cancers. J Proteome Res 7:5230–5236PubMedCrossRefGoogle Scholar
  21. 21.
    Rauser S et al (2010) Approaching MALDI molecular imaging for clinical proteomic research: current state and fields of application. Expert Rev Proteomics 7:927–941PubMedCrossRefGoogle Scholar
  22. 22.
    Ergin B et al (2010) Proteomic analysis of PAXgene–fixed tissues. J Proteome Res 9:5188–5196PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute of Pathology, Helmholtz Zentrum Munchen, German Research Center for Environmental HealthNeuherbergGermany

Personalised recommendations