Computational Toxicology pp 139-165

Part of the Methods in Molecular Biology book series (MIMB, volume 929) | Cite as

Informing Mechanistic Toxicology with Computational Molecular Models

  • Michael R. Goldsmith
  • Shane D. Peterson
  • Daniel T. Chang
  • Thomas R. Transue
  • Rogelio Tornero-Velez
  • Yu-Mei Tan
  • Curtis C. Dary
Protocol

Abstract

Computational molecular models of chemicals interacting with biomolecular targets provides toxicologists a valuable, affordable, and sustainable source of in silico molecular level information that augments, enriches, and complements in vitro and in vivo efforts. From a molecular biophysical ansatz, we describe how 3D molecular modeling methods used to numerically evaluate the classical pair-wise potential at the chemical/biological interface can inform mechanism of action and the dose–response paradigm of modern toxicology. With an emphasis on molecular docking, 3D-QSAR and pharmacophore/toxicophore approaches, we demonstrate how these methods can be integrated with chemoinformatic and toxicogenomic efforts into a tiered computational toxicology workflow. We describe generalized protocols in which 3D computational molecular modeling is used to enhance our ability to predict and model the most relevant toxicokinetic, metabolic, and molecular toxicological endpoints, thereby accelerating the computational toxicology-driven basis of modern risk assessment while providing a starting point for rational sustainable molecular design.

Key words

Docking Molecular model Virtual ligand screening Virtual screening Enrichment Toxicity Toxicoinformatics Discovery Prediction 3D-QSAR Toxicophore Toxicant In silico Pharmacophore 

References

  1. 1.
    Voutchkova A, Osimitz T, Anastas P (2010) Toward a comprehensive molecular design framework for reduced hazard. Chem Rev 110:5845–5882PubMedCrossRefGoogle Scholar
  2. 2.
    Rusyn I, Daston G (2010) Computational toxicology: realizing the promise of the toxicity testing in the 21st century. Environ Health Perspect 118:1047–1050PubMedCrossRefGoogle Scholar
  3. 3.
    Rabinowitz J, Goldsmith M, Little S, Pasquinelli M (2008) Computational molecular modeling for evaluating the toxicity of environmental chemicals: prioritizing bioassay requirements. Environ Health Perspect 116:573–577PubMedCrossRefGoogle Scholar
  4. 4.
    Allinger N, Burkert U (1982) Molecular mechanics. American Chemical Society, Washington, DCGoogle Scholar
  5. 5.
    Dix D, Houck K (2007) The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci 95:5–12PubMedCrossRefGoogle Scholar
  6. 6.
    Villoutreix B, Renault N, Lagorce D, Sperandio O, Montes M, Miteva M (2007) Free resources to assist structure-based virtual ligand screening experiments. Curr Protein Pept Sci 8:381–411PubMedCrossRefGoogle Scholar
  7. 7.
    Ponder J, Case D (2003) Force fields for protein simulations. Adv Protein Chem 66:27–85PubMedCrossRefGoogle Scholar
  8. 8.
    Pearlman D, Case D, Caldwell J, Ross W, Cheathham T, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91:1–41CrossRefGoogle Scholar
  9. 9.
    MacKerell A, Brooks B, Brooks C, Nilsson L, Roux B, Won Y, Kaplus M (1998) CHARMM: the energy function and its parameterization with an overview of the program. In: Scheyer PVR et al (eds) The encyclopedia of computational chemistry. Wiley, ChichesterGoogle Scholar
  10. 10.
    Case D, Cheatham T, Darden T, Gohlke H, Luo R, Merz K, Onufriev A, Simmerling C, Wang B, Woods R (2005) The AMBER biomolecular simulation programs. J Comput Chem 26:1668–1688PubMedCrossRefGoogle Scholar
  11. 11.
    Brooks B, Brooks C, Mackerell A, Nilsson L, Petrella R, Roux B, Won Y, Archontis C, Bartels S, Caflish B, Caves L, Cui Q, Dinner A, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridi T, Ma J, Ovchinnikov V, Paci E, Pastor R, Post C, Pu J, Schaefer M, Tidor B, Venable T, Woodcock H, Wu X, Yah W, York D, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1615PubMedCrossRefGoogle Scholar
  12. 12.
    Brooks B, Bruccoleri R, Olafson B, States D, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217CrossRefGoogle Scholar
  13. 13.
    Allinger N, Yuh Y, Lii J (1989) Molecular mechanics: the MM3 force field for hydrocarbons. J Am Chem Soc 111:8551–8566CrossRefGoogle Scholar
  14. 14.
    Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71:525–616CrossRefGoogle Scholar
  15. 15.
    Lipinski C, Lombardo F, Dominy B, Feeney P (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25CrossRefGoogle Scholar
  16. 16.
    Wermuth C, Ganellin C, Lindberg P, Mitscher L (1998) Glossary of terms used in medicinal chemistry. Pure Appl Chem 70:1129–1143CrossRefGoogle Scholar
  17. 17.
    Kubinyi H (2002) From narcosis to hyperspace: the history of QSAR. Quant Struct Act Relat 21:348–356CrossRefGoogle Scholar
  18. 18.
    Wold S, Ruhe A, Wold H, Dunn W (1984) The collinearity problem in linear regression—the partial least squares (PLS) approach to generalized inverses. SIAM J Sci Stat Comput 5:735–743CrossRefGoogle Scholar
  19. 19.
    Cramer R, Patterson D, Bunce J (1988) Comparative Molecular Field Analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967PubMedCrossRefGoogle Scholar
  20. 20.
    Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146PubMedCrossRefGoogle Scholar
  21. 21.
    Pastor M, Cruciani G, McLay I, Pickett S, Clementi S (2000) GRid-INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. J Med Chem 43:3233–3243PubMedCrossRefGoogle Scholar
  22. 22.
    Norinder U (1996) 3D-QSAR investigation of the Tripos benchmark steroids and some protein-tyrosine kinase inhibitors of styrene type using the TDQ approach. J Chemom 10:533–545CrossRefGoogle Scholar
  23. 23.
    Kurogi Y, Guner O (2001) Pharmacophore modelling and three-dimensional database searching for drug design using catalyst. Curr Med Chem 8:1035–1055PubMedGoogle Scholar
  24. 24.
    Park J, Harris D (2003) Construction and assessment of models of CYP2E1: predictions of metabolism from docking, molecular dynamics and density functional theoretical calculations. J Med Chem 46:1645–1660PubMedCrossRefGoogle Scholar
  25. 25.
    Jones J, Mysinger M, Korzekwa K (2002) Computational models for cytochrome P450: a predictive electronic model for aromatic oxidation and hydrogen atom abstraction. Drug Metab Dispos 30:7–12PubMedCrossRefGoogle Scholar
  26. 26.
    Cheng Y, Prusoff W (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108PubMedCrossRefGoogle Scholar
  27. 27.
    MOE. Chemical Computing Group. Montreal, Quebec, CanadaGoogle Scholar
  28. 28.
    Schrodinger, Inc. New York, NYGoogle Scholar
  29. 29.
    Cheatham T, Young M (2001) Molecular dynamics simulation of nucleic acids: successes, limitations and promise. Biopolymers 56:232–256CrossRefGoogle Scholar
  30. 30.
    Roterman I, Lambert M, Gibson K, Scheraga H (1989) A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. 2. Phi-Psi maps for n-acetyl alanine N′-methyl amide—comparisons, contrasts and simple experimental tests. J Biomol Struct Dyn 7:421–453PubMedCrossRefGoogle Scholar
  31. 31.
    Roterman I, Gibson K, Scheraga H (1989) A comparison of the CHARMM, AMBER and ECEPP potential for peptides. 1. Conformational predictions for the tandemly repeated peptide (Asn-Ala-Asn-Pro)9. J Biomol Struct Dyn 7:391–419PubMedCrossRefGoogle Scholar
  32. 32.
    Gundertofte K, Liljefors T, Norrby P, Petterson I (1996) A comparison of conformational energies calculated by several molecular mechanics methods. J Comput Chem 17:429–449CrossRefGoogle Scholar
  33. 33.
    Jorgensen W, Maxwell D, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236CrossRefGoogle Scholar
  34. 34.
    Jorgensen W, Tirado-Rives J (1988) The OPLS potential functions for proteins—energy minimizations for crystals of cyclic-peptides and crambin. J Am Chem Soc 110:1657–1666CrossRefGoogle Scholar
  35. 35.
    Halgren T (1996) Merck molecular force field. I. Basis, form, scope parameterization and performance of MMFF94. J Comput Chem 17:490–519CrossRefGoogle Scholar
  36. 36.
    Chen Y, Zhi D (2001) Ligand–protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins 43:217–226PubMedCrossRefGoogle Scholar
  37. 37.
    Ellis L, Hou B, Kang W, Wackett L (2003) The University of Minnesota Biocatalysis/Biodegradation Database: post-genomic data mining. Nucleic Acids Res 31:262–265PubMedCrossRefGoogle Scholar
  38. 38.
  39. 39.
    Bologa C, Olah M, Oprea T (2005) Chemical database preparation for compound acquisition or virtual screening. Methods Mol Biol 316:375Google Scholar
  40. 40.
    Accelrys Discovery Suite, Accelrys, Inc. San Diego, CAGoogle Scholar
  41. 41.
    Sybyl. Tripos, Inc. St. Louis, MOGoogle Scholar
  42. 42.
    Schwede T, Sali A, Honig B, Levitt M, Berman H, Jones D, Brenner S, Burley S, Das R, Dokholyan N, Dunbrack R, Fidelis K, Fiser A, Godzik A, Huang Y, Humblet C, Jacobsen M, Joachimiak A, Krystek S, Kortemme T, Kryshtafovych A, Montelione G, Moult J, Murray D, Sanchez R, Sosinick T, Standley D, Stouch T, Vajda S, Vasquez M, Westbrook J, Wilson I (2009) Outcome of a workshop on applications of protein models in biomedical research. Structure 17:151–159PubMedCrossRefGoogle Scholar
  43. 43.
    Irwin J (2008) Community benchmarks for virtual screening. J Comput Aided Mol Des 22:193–199PubMedCrossRefGoogle Scholar
  44. 44.
    Cross J, Thompson D, Rai B, Baber J, Fan K, Hu Y, Humblet C (2009) Comparison of several molecuclar docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model 49:1455–1474PubMedCrossRefGoogle Scholar
  45. 45.
    Cherkasov A, Fuqiang B, Li Y, Fallahi M, Hammond G (2006) Progressive docking: a hybrid QSAR/Docking approach for accelerating in silico high throughput screening. J Med Chem 49:7466–7478PubMedCrossRefGoogle Scholar
  46. 46.
    Peterson S (2007) Improved CoMFA modeling by optimization of settings: toward the design of inhibitors of the HCV NS3 protease. Uppsala University, UppsalaGoogle Scholar
  47. 47.
    Norinder U (1998) Recent progress in CoMFA methodology and related techniques. Perspect Drug Discov Des 12/13/14:25–39CrossRefGoogle Scholar
  48. 48.
    Kim K, Grecco G, Novellino E (1998) A critical review of recent CoMFA applications. Perspect Drug Discov Des 12/13/14:257–315CrossRefGoogle Scholar
  49. 49.
    Rosen J, Lovgren A, Kogej T, Muresan S, Gottfries J, Backlund A (2009) ChemGPS-NPWeb: chemical space navigation tool. J Comput Aided Mol Des 23:253–259PubMedCrossRefGoogle Scholar
  50. 50.
    Larsson J, Gottfries J, Muresan S, Backlund A (2007) ChemGPS-NP: tuned for navigation in biologically relevant chemical space. J Nat Prod 70:789–794PubMedCrossRefGoogle Scholar
  51. 51.
    Ekins S et al (2002) Three-dimensional quantitative structure-activity relationships of inhibitors of P-glycoprotein. Mol Pharmacol 61:964CrossRefGoogle Scholar
  52. 52.
    Thorsteinson N, Ban F, Santos-Filho O, Tabaei S, Miguel-Queralt S, Underhill C, Cherkasov A, Hammond G (2009) In silico identification of anthropogenic chemicals as ligands of zebrafish sex hormone binding globulin. Toxicol Appl Pharmacol 234:47–57PubMedCrossRefGoogle Scholar
  53. 53.
    Perry J, Goldsmith M, Peterson M, Beratan D, Wozniak G, Ruker F, Simon J (2004) Structure of the ochratoxin A binding site within human serum albumin. J Phys Chem B 108:16960–16964CrossRefGoogle Scholar
  54. 54.
    Aureli L, Cruciani G, Cesta M, Anacardio R, De Simone L, Moriconi A (2005) Predicting human serum albumin affinity of interleukin-8 (CXCL8) inhibitors by 3D-QSPR approach. J Med Chem 48:2469–2479PubMedCrossRefGoogle Scholar
  55. 55.
    Ekins S, de Groot M, Jones J (2001) Pharmacophore and three-dimensional quantitative structure activity relationship methods for modeling cytochrome P450 active sites. Drug Metab Dispos 29:936–944PubMedGoogle Scholar
  56. 56.
    Ekins S, Erickson J (2002) A pharmacophore for human pregnane X receptor ligands. Drug Metab Dispos 30:96–99PubMedCrossRefGoogle Scholar
  57. 57.
    Lewis D (2002) Molecular modeling of human cytochrome P450-substrate interactions. Drug Metab Rev 34:55–67PubMedCrossRefGoogle Scholar
  58. 58.
    Hirono S, Nakagome L, Imai R, Maeda K, Kusuhara H, Sugiyama Y (2005) Estimation of the three-dimensional pharmacophore of ligands for rat multidrug-resistance-associated protein 2 using ligand-based drug design techniques. Pharm Res 22:260–269PubMedCrossRefGoogle Scholar
  59. 59.
    DeGorter M, Conseil G, Deeley R, Campbell R, Cole S (2008) Molecular modeling of the human multidrug resistance protein 1 (MRP1/ABCC1). Biochem Biophys Res Commun 365:29–34PubMedCrossRefGoogle Scholar
  60. 60.
    Rabinowitz J, Little S, Laws S, Goldsmith M (2009) Molecular modeling for screening environmental chemicals for estrogenicity: use of the toxicant-target approach. Chem Res Toxicol 22:1594–1602PubMedCrossRefGoogle Scholar
  61. 61.
    Hirst W, Abrahamsen B, Blaney F, Calver A, Aloj L, Price G, Medhurst A (2003) Differences in the central nervous system distribution and pharmacology of the mouse 5-hydroxytryptamine-6 receptor compared with rat and human receptors investigated by radioligand binding, site-directed mutagenesis, and molecular modeling. Mol Pharmacol 64:1295–1308PubMedCrossRefGoogle Scholar
  62. 62.
  63. 63.
  64. 64.
    Goldsmith M, Little S, Reif D, Rabinowitz J Digging deeper into deep data: molecular docking as a hypothesis-driven biophysical interrogation system in computational toxicologyGoogle Scholar
  65. 65.
  66. 66.
  67. 67.
  68. 68.
  69. 69.
  70. 70.
  71. 71.
    Irwin J, Shoichet B, Mysinger M, Huang N, Colizzi F, Wassam P, Cao Y (2009) Automated docking screens: a feasibility study. J Med Chem 52:5712–5720PubMedCrossRefGoogle Scholar
  72. 72.
    Bioclipse. Proteometric Group, Department of Pharmaceutical Biosciences, Uppsala University, Sweden & Cheminformatics and Metabolism Team, European Bioinformatics Institute (EMBI)Google Scholar
  73. 73.
    Taverna. School of Computer Science, University of Manchester, UKGoogle Scholar
  74. 74.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Michael R. Goldsmith
    • 1
  • Shane D. Peterson
    • 1
  • Daniel T. Chang
    • 1
  • Thomas R. Transue
    • 2
  • Rogelio Tornero-Velez
    • 3
  • Yu-Mei Tan
    • 3
  • Curtis C. Dary
    • 4
  1. 1.National Exposure Research LaboratoryUS Environmental Protection AgencyResearch Triangle ParkUSA
  2. 2.Lockheed Martin Information TechnologyResearch Triangle ParkUSA
  3. 3.National Exposure Research LaboratoryU.S. Environmental Protection AgencyResearch Triangle ParkUSA
  4. 4.National Exposure Research laboratoryUS Environmental Protection AgencyResearch Triangle ParkUSA

Personalised recommendations