Advertisement

Malaria pp 51-72 | Cite as

Laboratory Maintenance of Rodent Malaria Parasites

  • Chandra Ramakrishnan
  • Michael J. Delves
  • Kalpana Lal
  • Andrew M. Blagborough
  • Geoffrey Butcher
  • Kenneth W. Baker
  • Robert E. SindenEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 923)

Abstract

We provide a series of protocols that have been used for the cyclic transmission of rodent malaria parasites in the laboratory. This is now possible both in vivo and in vitro. We focus on the least “resource intensive” and generic methods that we find applicable to any parasite–host combination. Nonetheless, we recognize that the ability to construct transgenic “reporter” parasites/hosts now permits the use of elegant analytical and imaging technologies both in vitro, ex vivo, and in vivo in specific instances. The descriptions given illustrate methods routinely used for the maintenance of P. berghei; where critical, we note important differences when transmitting other parasite species.

Key words

Plasmodium Berghei Yoelii Chabaudi Passage Culture Mosquito Asexual Schizont Gametocyte Exflagellation Ookinete Oocyst Sporozoite Pre-erythrocytic 

References

  1. 1.
    Suhrbier A et al (1987) The complete development in vitro of the vertebrate phase of the mammalian malarial parasite Plasmodium berghei. Trans R Soc Trop Med Hyg 81:907–909PubMedCrossRefGoogle Scholar
  2. 2.
    Al-Olayan EM et al (2002) Complete development of mosquito phases of the malaria parasite in vitro. Science 295:677–679PubMedCrossRefGoogle Scholar
  3. 3.
    Vanderberg JP, Gwadz RW (1980) The transmission by mosquitoes of plasmodia in the laboratory. In: Kreier JP (ed) Malaria, vol 2, Pathology, vector studies, and culture. Academic, New York, pp 154–234Google Scholar
  4. 4.
    Sinden RE (1996) Infection of mosquitoes with rodent malaria. In: Crampton JM, Beard CB, Louis C (eds) Molecular biology of insect disease vectors: a methods manual, 1st edn. Chapman & Hall, London, pp 67–91Google Scholar
  5. 5.
    Sinden RE et al (2002) Maintenance of the Plasmodium berghei life cycle. In: Doolan D (ed) Methods in molecular medicine. Humana, Totowa, NJ, pp 25–40Google Scholar
  6. 6.
    Shute P, Maryon M (1966) Laboratory technique for the study of malaria, 2nd edn. J & A Churchill, LondonGoogle Scholar
  7. 7.
    Franke-Fayard B et al (2004) A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle. Mol Biochem Parasitol 137:23–33PubMedCrossRefGoogle Scholar
  8. 8.
    Dearsly AL et al (1990) Sexual development in malarial parasites: gametocyte production, fertility and infectivity to the mosquito vector. Parasitology 100:359–368PubMedCrossRefGoogle Scholar
  9. 9.
    Jaffe RI et al (1990) Differences in susceptibility among mouse strains to infection with Plasmodium berghei (ANKA clone) sporozoites and its relationship to protection by gamma-irradiated sporozoites. Am J Trop Med Hyg 42:309–313PubMedGoogle Scholar
  10. 10.
    Scheller LF et al (1994) Susceptibility of different strains of mice to hepatic infection with Plasmodium berghei. Infect Immun 62:4844–4847PubMedGoogle Scholar
  11. 11.
    Mons B (1986) Intraerythrocytic differentiation of Plasmodium berghei. Acta Leiden 54:1–83PubMedGoogle Scholar
  12. 12.
    Schneider I (1972) Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27:353–365PubMedGoogle Scholar
  13. 13.
    Vanderberg JP et al (1968) Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. II. Effects of radiation on sporozoites. J Parasitol 54:175–180CrossRefGoogle Scholar
  14. 14.
    Sinden RE et al (2008) Progression of Plasmodium berghei through Anopheles stephensi is density-dependent. PLoS Pathog 3:e195CrossRefGoogle Scholar
  15. 15.
    Ploemen IH et al (2009) Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging. PLoS One 4:e7881PubMedCrossRefGoogle Scholar
  16. 16.
    Feldmann AM, Ponnudurai T (1989) Selection of Anopheles stephensi for refractoriness and susceptibility to Plasmodium falciparum. Med Vet Entomol 3:41–52PubMedCrossRefGoogle Scholar
  17. 17.
    Sato Y et al (1996) Effect of temperature on Plasmodium berghei and P. yoelii on mosquito stage in Anopheles stephensi. J Parasitol 45:98–104Google Scholar
  18. 18.
    Yoeli M, Upmanis RS (1968) Plasmodium berghei ookinete formation in vitro. Exp Parasitol 22:122–128PubMedCrossRefGoogle Scholar
  19. 19.
    Strome CP et al (1979) The cultivation of the exoerythrocytic stages of Plasmodium berghei from sporozoites. In Vitro 15:531–536PubMedCrossRefGoogle Scholar
  20. 20.
    Sinden RE, Smith JE (1980) Culture of the liver stages (exoerythrocytic schizonts) of rodent malaria parasites from sporozoites in vitro. Trans R Soc Trop Med Hyg 74:134–136PubMedCrossRefGoogle Scholar
  21. 21.
    Calvo-Calle JM et al (1994) In vitro development of infectious liver stages of P. yoelii and P. berghei malaria in human cell lines. Exp Parasitol 79:362–373PubMedCrossRefGoogle Scholar
  22. 22.
    Sinden RE et al (1990) The development and routine application of high-density exoerythrocytic-stage cultures of Plasmodium berghei. Bull World Health Organ 68:115–125PubMedGoogle Scholar
  23. 23.
    Davies CS et al (1989) Improved techniques for the culture of the liver stages of Plasmodium berghei and their relevance to the study of causal prophylactic drugs. Acta Leiden 58:97–113PubMedGoogle Scholar
  24. 24.
    Mazier D et al (1982) Infection in vitro d’hépatocytes de Thamnomys adultes par des sporozoïtes de P. yoelii: développement de schizontes et libération de mérozoïtes infectants. Ann Parasitol Hum Comp 57:99–100PubMedGoogle Scholar
  25. 25.
    Hollingdale MR et al (1985) In vitro cultivation of the exoerythrocytic stage of Plasmodium berghei in irradiated hepatoma cells. Am J Trop Med Hyg 34:21–23PubMedGoogle Scholar
  26. 26.
    Mons B et al (1983) In vitro culture of Plasmodium berghei using a new suspension system. Int J Parasitol 13:213–217PubMedCrossRefGoogle Scholar
  27. 27.
    Waters AP et al (1997) Transfection of malaria parasites. Methods 13:134–147PubMedCrossRefGoogle Scholar
  28. 28.
    Billker O et al (2004) Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite. Cell 117:503–514PubMedCrossRefGoogle Scholar
  29. 29.
    Mishell B, Shiigi S (1980) Selected methods in cellular immunology. W.H. Freeman & Co, San Fransico, USA, pp 23–24Google Scholar
  30. 30.
    Delves M, Sinden RE (2010) A semi-automated method for counting fluorescent malaria oocysts increases the throughput of transmission blocking studies. Malar J 9:35PubMedCrossRefGoogle Scholar
  31. 31.
    Motard A et al (1993) The role of reactive nitrogen intermediates in modulation of gametocyte infectivity of rodent malaria parasites. Parasite Immunol 15:21–26PubMedCrossRefGoogle Scholar
  32. 32.
    Gautret P et al (1996) The gametocytes of Plasmodium vinckei petteri, their morphological stages, periodicity and infectivity. Int J Parasitol 26:1095–1101PubMedGoogle Scholar
  33. 33.
    Gautret P et al (2000) The effects of subcurative doses of chloroquine on Plasmodium vinckei petteri gametocytes and on their infectivity to mosquitoes. Int J Parasitol 30:1193–1198PubMedCrossRefGoogle Scholar
  34. 34.
    Buckling AG et al (1997) Adaptive changes in Plasmodium transmission strategies following chloroquine chemotherapy. Proc Biol Sci 264:553–559PubMedCrossRefGoogle Scholar
  35. 35.
    Buckling AG, Read AF (1999) The effect of chloroquine treatment on the infectivity of Plasmodium chabaudi gametocytes. Int J Parasitol 29:619–625PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Chandra Ramakrishnan
    • 1
  • Michael J. Delves
    • 1
  • Kalpana Lal
    • 1
  • Andrew M. Blagborough
    • 1
  • Geoffrey Butcher
    • 1
  • Kenneth W. Baker
    • 1
  • Robert E. Sinden
    • 1
    Email author
  1. 1.The Malaria Centre, Department of Life SciencesImperial CollegeLondonUK

Personalised recommendations