Advertisement

Malaria pp 577-600 | Cite as

Assessing Transmission Blockade in Plasmodium spp.

  • Andrew M. Blagborough
  • Michael J. Delves
  • Chandra Ramakrishnan
  • Kalpana Lal
  • Geoffrey Butcher
  • Robert E. Sinden
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 923)

Abstract

Here we describe a series of methods that can be used to assess the activities of “vaccines,” drugs, and genetically modified vectors, for their abilities to inhibit transmission of Plasmodium from its vertebrate to its mosquito hosts. The selection of method to be used is determined by the purpose of the experiment, which can include the determination of the site/time of activity, and/or the potential reduction in transmission achieved.

Key words

Plasmodium Berghei Falciparum Passage Culture Mosquito Sexual Gametocyte Exflagellation Ookinete Oocyst Sporozoite Vaccine Drug Transmission Blockade 

References

  1. 1.
    Sinden RE (2010) A biologist’s perspective on malaria vaccine development. Hum Vaccin 6:3–11PubMedCrossRefGoogle Scholar
  2. 2.
    Rosenberg R (2008) Malaria: some considerations regarding parasite productivity. Trends Parasitol 24:487–491PubMedCrossRefGoogle Scholar
  3. 3.
    Butcher GA (1997) Antimalarial drugs and the mosquito transmission of Plasmodium. Int J Parasitol 27:975–987PubMedCrossRefGoogle Scholar
  4. 4.
    Sauerwein RW (2007) Malaria transmission-blocking vaccines: the bonus of effective malaria control. Microbes Infect 9:792–795PubMedCrossRefGoogle Scholar
  5. 5.
    Carter R (2001) Transmission blocking malaria vaccines. Vaccine 19:2309–2314PubMedCrossRefGoogle Scholar
  6. 6.
    Malkin EM et al (2005) Phase I clinical trial of Pvs25H: a transmission blocking vaccine for Plasmodium vivax malaria. Vaccine 23:3131–3138PubMedCrossRefGoogle Scholar
  7. 7.
    Stowers A, Carter R (2001) Current developments in malaria transmission-blocking vaccines. Expert Opin Biol Ther 1:619–628PubMedCrossRefGoogle Scholar
  8. 8.
    Wu Y et al (2008) Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with montanide ISA 51. PLoS One 3:e2636PubMedCrossRefGoogle Scholar
  9. 9.
    LeBlanc R et al (2008) Markedly enhanced immunogenicity of a Pfs25 DNA-based malaria transmission-blocking vaccine by in vivo electroporation. Vaccine 26:185–192PubMedCrossRefGoogle Scholar
  10. 10.
    Lobo CA et al (1999) Immunization of mice with DNA-based Pfs25 elicits potent malaria transmission-blocking antibodies. Infect Immun 67:1688–1693PubMedGoogle Scholar
  11. 11.
    Blagborough AM et al (2010) Intranasal and intramuscular immunization with Baculovirus Dual Expression System-based Pvs25 vaccine substantially blocks Plasmodium vivax ­transmission. Vaccine 28:6014–6020PubMedCrossRefGoogle Scholar
  12. 12.
    Miyata T et al (2011) Adenovirus-vectored Plasmodium vivax ookinete surface protein, Pvs25, as a potential transmission-blocking vaccine. Vaccine 29:2720–2726PubMedCrossRefGoogle Scholar
  13. 13.
    Franke-Fayard B et al (2004) A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle. Mol Biochem Parasitol 137:23–33PubMedCrossRefGoogle Scholar
  14. 14.
    Janse CJ et al (2006) High efficiency transfection of Plasmodium berghei facilitates novel selection procedures. Mol Biochem Parasitol 145:60–70PubMedCrossRefGoogle Scholar
  15. 15.
    Ramjanee S et al (2007) The use of transgenic Plasmodium berghei expressing the Plasmodium vivax antigen P25 to determine the transmission-blocking activity of sera from malaria vaccine trials. Vaccine 25:886–894PubMedCrossRefGoogle Scholar
  16. 16.
    Mlambo G et al (2008) Murine model for assessment of Plasmodium falciparum transmission-blocking vaccine using transgenic Plasmodium berghei parasites expressing the target antigen Pfs25. Infect Immun 76:2018–2024PubMedCrossRefGoogle Scholar
  17. 17.
    Delves MJ, Sinden RE (2010) A semi-automated method for counting fluorescent malaria oocysts increases the throughput of transmission blocking studies. Malar J 29:9–35Google Scholar
  18. 18.
    Sinden RE et al (2007) Progression of Plasmodium berghei through Anopheles stephensi is density-dependent. PLoS Pathog 3:e195PubMedCrossRefGoogle Scholar
  19. 19.
    Vaid A, Sharma P (2006) PfPKB, a protein kinase B-like enzyme from Plasmodium falciparum: II. Identification of calcium/calmodulin as its upstream activator and dissection of a novel signalling pathway. J Biol Chem 281:27126–27133PubMedCrossRefGoogle Scholar
  20. 20.
    Winger LA et al (1988) Ookinete antigens of Plasmodium berghei. Appearance on the zygote surface of an Mr 21 kDa determinant identified by transmission-blocking monoclonal antibodies. Parasite Immunol 10:193–207PubMedCrossRefGoogle Scholar
  21. 21.
    Ponnudurai T et al (1986) Synchronization of Plasmodium falciparum gametocytes using an automated suspension culture system. Parasitology 93:263–274PubMedCrossRefGoogle Scholar
  22. 22.
    Graves PM et al (1984) Gametocyte production in cloned lines of Plasmodium falciparum. Am J Trop Med Hyg 33:1045–1050PubMedGoogle Scholar
  23. 23.
    Ifediba T, Vanderburg JP (1981) Complete in vitro maturation of Plasmodium falciparum gametocytes. Nature 294:364–366PubMedCrossRefGoogle Scholar
  24. 24.
    Read M, Hyde JE (1993) Simple in vitro cultivation of the malaria parasite Plasmodium falciparum (erythrocytic stages) suitable for large-scale preparations. Methods Mol Biol 21:43–55PubMedGoogle Scholar
  25. 25.
    Brown KN, Hills LA (1981) Erythrocyte destruction and protective immunity to malaria: enhancement of the immune response by phenylhydrazine treatment. Tropenmed Parasitol 32:67–72PubMedGoogle Scholar
  26. 26.
    van den Berghe L (1954) The history of the discovery of Plasmodium berghei. Indian J Malariol 8:241–243Google Scholar
  27. 27.
    Vincke IH (1954) Natural history of Plasmodium berghei. Indian J Malariol 8:245–256PubMedGoogle Scholar
  28. 28.
    Yoeli M (1965) Studies on Plasmodium berghei in nature and under experimental conditions. Trans R Soc Trop Med Hyg 59:255–276PubMedCrossRefGoogle Scholar
  29. 29.
    Bray RS (1954) The mosquito transmission of Plasmodium berghei. Indian J Malariol 8:263–274PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Andrew M. Blagborough
    • 1
  • Michael J. Delves
    • 1
  • Chandra Ramakrishnan
    • 1
  • Kalpana Lal
    • 1
  • Geoffrey Butcher
    • 1
  • Robert E. Sinden
    • 1
  1. 1.The Malaria Centre, Department of Life SciencesImperial CollegeLondonUK

Personalised recommendations