Advertisement

Malaria pp 321-333 | Cite as

Genome-wide Chromatin Immunoprecipitation-Sequencing in Plasmodium

  • Jose-Juan Lopez-Rubio
  • T. Nicolai Siegel
  • Artur Scherf
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 923)

Abstract

Chromatin immunoprecipitation (ChIP) studies have been used extensively in recent years to study the functional role of histone marks, variant histones, and other chromatin factors in gene expression in the human malaria parasite, Plasmodium falciparum. In this chapter, we present a ChIP-sequencing protocol optimized for blood-stage forms of this parasite. The processing of the immunoprecipitated DNA prior to high-throughput sequencing is performed in a way to minimize amplification biases due to the high genomic AT-content of the parasite.

Key words

Plasmodium falciparum Red blood cells Chromatin immunoprecipitation ChIP-seq 

Notes

Acknowledgments

This work was supported by the French Agency for Research (ANR Blanc 0274-01) and European Research Council Executive Agency Advanced Grant (PlasmoEscape 250320). T.N.S. was supported by a Human Frontier Science Program (HFSP) fellowship.

References

  1. 1.
    Jiang L et al (2010) Epigenetic control of the variable expression of a Plasmodium falciparum receptor protein for erythrocyte invasion. Proc Natl Acad Sci USA 107:2224–2229PubMedCrossRefGoogle Scholar
  2. 2.
    Lopez-Rubio JJ et al (2009) Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. Cell Host Microbe 5:179–190PubMedCrossRefGoogle Scholar
  3. 3.
    Salcedo-Amaya AM et al (2009) Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum. Proc Natl Acad Sci USA 106:9655–9660PubMedCrossRefGoogle Scholar
  4. 4.
    Bartfai R et al (2010) H2A.Z demarcates ­intergenic regions of the Plasmodium falciparum epigenome that are dynamically marked by H3K9ac and H3K4me3. PLoS Pathog 6:e1001223PubMedCrossRefGoogle Scholar
  5. 5.
    Cui L et al (2007) PfGCN5-mediated histone H3 acetylation plays a key role in gene expression in Plasmodium falciparum. Eukaryot Cell 6:715–725CrossRefGoogle Scholar
  6. 6.
    Freitas-Junior LH et al (2005) Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Cell 121:25–36PubMedCrossRefGoogle Scholar
  7. 7.
    Flueck C et al (2009) Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors. PLoS Pathog 5:e1000569PubMedCrossRefGoogle Scholar
  8. 8.
    Perez-Toledo K et al (2009) Plasmodium falciparum heterochromatin protein 1 binds to tri-methylated histone 3 lysine 9 and is linked to mutually exclusive expression of var genes. Nucleic Acids Res 37:2596–2606PubMedCrossRefGoogle Scholar
  9. 9.
    Flueck C et al (2010) A major role for the Plasmodium falciparum ApiAP2 protein PfSIP2 in chromosome end biology. PLoS Pathog 6:e1000784PubMedCrossRefGoogle Scholar
  10. 10.
    Chookajorn T et al (2007) Epigenetic memory at malaria virulence genes. Proc Natl Acad Sci USA 104:899–902PubMedCrossRefGoogle Scholar
  11. 11.
    Lopez-Rubio JJ et al (2007) 5´ flanking region of var genes nucleate histone modification ­patterns linked to phenotypic inheritance of virulence traits in malaria parasites. Mol Microbiol 66:1296–1305PubMedGoogle Scholar
  12. 12.
    Mancio-Silva L et al (2008) Differential association of Orc1 and Sir2 proteins to telomeric domains in Plasmodium falciparum. J Cell Sci 121:2046–2053PubMedCrossRefGoogle Scholar
  13. 13.
    Schones DE, Zhao K (2008) Genome-wide approaches to studying chromatin modifications. Nat Rev Genet 9:179–191PubMedCrossRefGoogle Scholar
  14. 14.
    Casneuf T et al (2007) In situ analysis of cross-hybridisation on microarrays and the inference of expression correlation. BMC Bioinformatics 8:461PubMedCrossRefGoogle Scholar
  15. 15.
    Nagalakshmi U et al (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349PubMedCrossRefGoogle Scholar
  16. 16.
    Barski A et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837PubMedCrossRefGoogle Scholar
  17. 17.
    Su XZ et al (1996) Reduced extension temperatures required for PCR amplification of extremely A  +  T-rich DNA. Nucleic Acids Res 24:1574–1575PubMedCrossRefGoogle Scholar
  18. 18.
    Lopez-Barragan MJ et al (2010) Effect of PCR extension temperature on high-throughput sequencing. Mol Biochem Parasitol 176:64–67PubMedCrossRefGoogle Scholar
  19. 19.
    Quail MA et al (2008) A large genome center’s improvements to the Illumina sequencing system. Nat Methods 5:1005–1010PubMedCrossRefGoogle Scholar
  20. 20.
    Quail MA et al (2009) Improved protocols for the illumina genome analyzer sequencing system. Curr Protoc Hum Genet Chapter 18, Unit 18.2Google Scholar
  21. 21.
    Kurdistani SK, Grunstein M (2003) Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4:276–284PubMedCrossRefGoogle Scholar
  22. 22.
    Nowak DE et al (2005) Two-step cross-linking method for identification of NF-kappaB gene network by chromatin immunoprecipitation. Biotechniques 39:715–725PubMedCrossRefGoogle Scholar
  23. 23.
    Zeng PY et al (2006) In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. Biotechniques 41:694, 696, 698PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jose-Juan Lopez-Rubio
    • 1
  • T. Nicolai Siegel
    • 1
  • Artur Scherf
    • 1
  1. 1.Unité de Biologie des Interactions Hôte-ParasiteInstitut PasteurParisFrance

Personalised recommendations