Malaria pp 161-176 | Cite as

Silencing of Genes and Alleles by RNAi in Anopheles gambiae

  • Marina Lamacchia
  • John R. Clayton
  • Rui Wang-Sattler
  • Lars M. Steinmetz
  • Elena A. Levashina
  • Stéphanie A. Blandin
Part of the Methods in Molecular Biology book series (MIMB, volume 923)


Anopheles gambiae mosquitoes are the major vectors of human malaria parasites. However, mosquitoes are not passive hosts for parasites, actively limiting their development in vivo. Our current understanding of the mosquito antiparasitic response is mostly based on the phenotypic analysis of gene knockdowns obtained by RNA interference (RNAi), through the injection or transfection of long dsRNAs in adult mosquitoes or cultured cells, respectively. Recently, RNAi has been extended to silence specifically one allele of a given gene in a heterozygous context, thus allowing to compare the contribution of different alleles to a phenotype in the same genetic background.

Key words

Malaria Mosquito RNAi Reciprocal allele-specific RNAi Real-time PCR Western blot 



The authors acknowledge the continuous support and interest of Professor Jules A. Hoffmann and members of the laboratories in Strasbourg and Heidelberg for constructive discussions. This work was supported by grants from CNRS, INSERM E.A.L. and S.A.B, by a European Research Council Starting Grant (S.A.B), by the Seventh European Commission Programme “Network of Excellence” Evimalar (E.A.L), and by grants from NIH and the Deutsche Forschunggemeinschaft (L.S.M).


  1. 1.
    Collins FH et al (1986) Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science 234: 607–610PubMedCrossRefGoogle Scholar
  2. 2.
    Vernick KD et al (1995) Plasmodium gallinaceum: a refractory mechanism of ookinete killing in the mosquito, Anopheles gambiae. Exp Parasitol 80:583–595PubMedCrossRefGoogle Scholar
  3. 3.
    Blandin S et al (2002) Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Rep 3:852–856PubMedCrossRefGoogle Scholar
  4. 4.
    Blandin S et al (2004) Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell 116:661–670PubMedCrossRefGoogle Scholar
  5. 5.
    Boisson B et al (2006) Gene silencing in mosquito salivary glands by RNAi. FEBS Lett 580:1988–1992PubMedCrossRefGoogle Scholar
  6. 6.
    Marois E (2011) The multifaceted mosquito anti-Plasmodium response. Curr Opin Microbiol 14:429–435PubMedCrossRefGoogle Scholar
  7. 7.
    Vargas L (1949) Culicine and aedine mosquitoes and the malaria infections of lower ­animals. In: Boyd M (ed) Malariology. Saunders W.B, Philadelphia, pp 526–538Google Scholar
  8. 8.
    Zheng L et al (1997) Quantitative trait loci for refractoriness of Anopheles gambiae to Plasmodium cynomolgi B. Science 276:425PubMedCrossRefGoogle Scholar
  9. 9.
    Riehle MM et al (2006) Natural malaria infection in Anopheles gambiae is regulated by a single genomic control region. Science 312:577–579PubMedCrossRefGoogle Scholar
  10. 10.
    Riehle MM et al (2008) Anopheles gambiae APL1 is a family of variable LRR proteins required for Rel1-mediated protection from the malaria parasite, Plasmodium berghei. PLoS One 3:e3672PubMedCrossRefGoogle Scholar
  11. 11.
    Blandin S et al (2009) Dissecting the genetic basis of resistance to malaria parasites in Anopheles gambiae. Science 326:147–150PubMedCrossRefGoogle Scholar
  12. 12.
    Horn T, Boutros M (2010) E-RNAi: a web application for the multi-species design of RNAi reagents–2010 update. Nucleic Acids Res 38:W332–W339PubMedCrossRefGoogle Scholar
  13. 13.
    Saleh M-C et al (2006) The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat Cell Biol 8:793–802PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Marina Lamacchia
    • 1
  • John R. Clayton
    • 1
  • Rui Wang-Sattler
    • 2
  • Lars M. Steinmetz
    • 3
  • Elena A. Levashina
    • 1
  • Stéphanie A. Blandin
    • 1
  1. 1.Institut de Biologie Moléculaire et CellulaireStrasbourgFrance
  2. 2.Research Unit of Molecular Epidemiology, Helmholtz Zentrum MünchenNeuherbergGermany
  3. 3.Genome Biology Unit, European Molecular Biology LaboratoryHeidelbergGermany

Personalised recommendations