How to Investigate Interactions Between Membrane Proteins and Ligands by Solid-State NMR

  • Andrea Lakatos
  • Karsten Mörs
  • Clemens GlaubitzEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 914)


Solid-state NMR is an established method for biophysical studies of membrane proteins within the lipid bilayers and an emerging technique for structural biology in general. In particular magic angle sample spinning has been found to be very useful for the investigation of large membrane proteins and their interaction with small molecules within the lipid bilayer. Using a number of examples, we illustrate and discuss in this chapter, which information can be gained and which experimental parameters need to be considered when planning such experiments. We focus especially on the interaction of diffusive ligands with membrane proteins.

Key words

Solid-state NMR Membrane proteins Protein–ligand interactions 


  1. 1.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242PubMedCrossRefGoogle Scholar
  2. 2.
    Watts A (2005) Solid-state NMR in drug design and discovery for membrane-embedded targets. Nat Rev Drug Discov 4:555–568PubMedCrossRefGoogle Scholar
  3. 3.
    Laws DD, Bitter H-M, Jerschow A (2002) Solid-state NMR spectroscopic methods in chemistry. Angew Chem Int Ed Engl 41:3096–3129PubMedCrossRefGoogle Scholar
  4. 4.
    Renault M, Cukkemane A, Baldus M (2010) Solid-state NMR spectroscopy on complex biomolecules. Angew Chem Int Ed Engl 49:8346–8357PubMedCrossRefGoogle Scholar
  5. 5.
    Higman V, Flinders J, Hiller M, Jehle S, Markovic S, Fiedler S, van Rossum B-J, Oschkinat H (2009) Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively 13C-labelled proteins. J Biomol NMR 44:245–260PubMedCrossRefGoogle Scholar
  6. 6.
    Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102PubMedCrossRefGoogle Scholar
  7. 7.
    Schubert M, Manolikas T, Rogowski M, Meier B (2006) Solid-state NMR spectroscopy of 10% 13C labeled ubiquitin: spectral simplification and stereospecific assignment of isopropyl groups. J Biomol NMR 35:167–173PubMedCrossRefGoogle Scholar
  8. 8.
    Hong M, Jakes K (1999) Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigations. J Biomol NMR 14:71–74PubMedCrossRefGoogle Scholar
  9. 9.
    Lee K, Androphy E, Baleja J (1995) A novel method for selective isotope labeling of bacterially expressed proteins. J Biomol NMR 5:93–96PubMedCrossRefGoogle Scholar
  10. 10.
    Heise H, Hoyer W, Becker S, Andronesi O, Riedel D, Baldus M (2005) Molecular-level secondary structure, polymorphism, and dynamics of full-length α-synuclein fibrils studied by solid-state NMR. Proc Natl Acad Sci U S A 102:15871–15876PubMedCrossRefGoogle Scholar
  11. 11.
    Waugh DS (1996) Genetic tools for selective labeling of proteins alpha-15N-amino acids. J Biomol NMR 8:184–192PubMedCrossRefGoogle Scholar
  12. 12.
    Tong K, Yamamoto M, Tanaka T (2008) A simple method for amino acid selective isotope labeling of recombinant proteins in E. coli. J Biomol NMR 42:59–67PubMedCrossRefGoogle Scholar
  13. 13.
    Sobhanifar S, Reckel S, Junge F, Schwarz D, Kai L, Karbyshev M, Löhr F, Bernhard F, Dötsch V (2010) Cell-free expression and stable isotope labelling strategies for membrane proteins. J Biomol NMR 46:33–43PubMedCrossRefGoogle Scholar
  14. 14.
    Maslennikov I, Klammt C, Hwang E, Kefala G, Okamura M, Esquivies L, Mörs K, Glaubitz C, Kwiatkowski W, Jeon Y, Choe S (2010) Membrane domain structures of three classes of histidine kinase receptors by cell-free expression and rapid NMR analysis. Proc Natl Acad Sci U S A 107:10902–10907PubMedCrossRefGoogle Scholar
  15. 15.
    Hefke F, Bagaria A, Reckel S, Ullrich S, Dötsch V, Glaubitz C, Güntert P (2011) Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm. J Biomol NMR 49:75–84PubMedCrossRefGoogle Scholar
  16. 16.
    Patching S, Herbert R, O’Reilly J, Brough A, Henderson P (2004) Low 13C-background for NMR-based studies of ligand binding using 13C-depleted glucose as carbon source for microbial growth: 13C-labeled glucose and 13C-forskolin binding to the galactose-H+ symport protein GalP in Escherichia coli. J Am Chem Soc 126:86–87PubMedCrossRefGoogle Scholar
  17. 17.
    Perler F, Davis E, Dean G, Gimble F, Jack W, Neff N, Noren C, Thorner J, Belfort M (1994) Protein splicing elements: inteins and exteins—a definition of terms and recommended nomenclature. Nucleic Acids Res 22:1125–1127PubMedCrossRefGoogle Scholar
  18. 18.
    Dawson PE, Muir TW, Clark-Lewis I, Kent SB (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779PubMedCrossRefGoogle Scholar
  19. 19.
    Schwarz D, Junge F, Durst F, Frolich N, Schneider B, Reckel S, Sobhanifar S, Dotsch V, Bernhard F (2007) Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems. Nat Protoc 2:2945–2957PubMedCrossRefGoogle Scholar
  20. 20.
    Noirot C, Habenstein B, Bousset L, Melki R, Meier B, Endo Y, Penin FO, Böckmann A (2011) Wheat-germ cell-free production of prion proteins for solid-state NMR structural studies. N Biotechnol 28:232–238PubMedCrossRefGoogle Scholar
  21. 21.
    Kigawa T, Muto Y, Yokoyama S (1995) Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for NMR analysis. J Biomol NMR 6:129–134PubMedCrossRefGoogle Scholar
  22. 22.
    Kigawa T, Yabuki T, Yoshida Y, Tsutsui M, Ito Y, Shibata T, Yokoyama S (1999) Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett 442:15–19PubMedCrossRefGoogle Scholar
  23. 23.
    Abdine A, Verhoeven M, Warschawski D (2011) Cell-free expression and labeling strategies for a new decade in solid-state NMR. N Biotechnol 28:272–276PubMedCrossRefGoogle Scholar
  24. 24.
    Klammt C, Schwarz D, Fendler K, Haase W, Dötsch V, Bernhard F (2005) Evaluation of detergents for the soluble expression of alpha-helical and beta-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system. FEBS J 272:6024–6038PubMedCrossRefGoogle Scholar
  25. 25.
    Schwarz D, Klammt C, Koglin A, Löhr F, Schneider B, Dötsch V, Bernhard F (2006) Preparative scale cell-free expression systems: new tools for the large scale preparation of integral membrane proteins for functional and structural studies. Methods 41:355–369CrossRefGoogle Scholar
  26. 26.
    Boland M, Middleton D (2004) Insights into the interactions between a drug and a membrane protein target by fluorine cross-polarization magic angle spinning NMR. Magn Reson Chem 42:204–211PubMedCrossRefGoogle Scholar
  27. 27.
    Privé GG (2009) Lipopeptide detergents for membrane protein studies. Curr Opin Struct Biol 19:379–385PubMedCrossRefGoogle Scholar
  28. 28.
    Abe R, Caaveiro J, Kudou M, Tsumoto K (2010) Solubilization of membrane proteins with novel n-acylamino acid detergents. Mol Biosyst 6:677–679PubMedCrossRefGoogle Scholar
  29. 29.
    Landsmann S, Lizandara-Pueyo C, Polarz S (2010) A new class of surfactants with multinuclear, inorganic head groups. J Am Chem Soc 132:5315–5321PubMedCrossRefGoogle Scholar
  30. 30.
    Popot J (2010) Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79:737–775PubMedCrossRefGoogle Scholar
  31. 31.
    Privé GG (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods 41:388–397PubMedCrossRefGoogle Scholar
  32. 32.
    Holloway PW (1973) A simple procedure for removal of triton X-100 from protein samples. Anal Biochem 53:304–308PubMedCrossRefGoogle Scholar
  33. 33.
    Rigaud JL, Levy D, Mosser G, Lambert O (1998) Detergent removal by non-polar polystyrene beads. Eur Biophys J 27:305–319CrossRefGoogle Scholar
  34. 34.
    Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666:105–117PubMedCrossRefGoogle Scholar
  35. 35.
    Margolles A, Putman M, van Veen H, Konings W (1999) The purified and functionally reconstituted multidrug transporter LmrA of Lactococcus lactis mediates the transbilayer movement of specific fluorescent phospholipids. Biochemistry 38:16298–16306PubMedCrossRefGoogle Scholar
  36. 36.
    Hellmich U, Haase W, Velamakanni S, van Veen H, Glaubitz C (2008) Caught in the act: ATP hydrolysis of an ABC-multidrug transporter followed by real-time magic angle spinning NMR. FEBS Lett 582:3557–3562PubMedCrossRefGoogle Scholar
  37. 37.
    Shi L, Ahmed M, Zhang W, Whited G, Brown L, Ladizhansky V (2009) Three-dimensional solid-state NMR study of a seven-helical integral membrane proton pump-structural insights. J Mol Biol 386:1078–1093PubMedCrossRefGoogle Scholar
  38. 38.
    Levy D, Chami M, Rigaud JL (2001) Two-dimensional crystallization of membrane proteins: the lipid layer strategy. FEBS Lett 504:187–193PubMedCrossRefGoogle Scholar
  39. 39.
    Shastri S, Vonck J, Pfleger N, Haase W, Kuehlbrandt W, Glaubitz C (2007) Proteorhodopsin: characterisation of 2D crystals by electron microscopy and solid state NMR. Biochim Biophys Acta 1768:3012–3019PubMedCrossRefGoogle Scholar
  40. 40.
    Hiller M, Krabben L, Vinothkumar K, Castellani F, van Rossum B-J, Kühlbrandt W, Oschkinat H (2005) Solid-state magic-angle spinning NMR of outer-membrane protein G from Escherichia coli. Chembiochem 6:1679–1684PubMedCrossRefGoogle Scholar
  41. 41.
    Alvarez F, Orelle C, Davidson A (2010) Functional reconstitution of an ABC transporter in nanodiscs for use in electron paramagnetic resonance spectroscopy. J Am Chem Soc 132:9513–9515PubMedCrossRefGoogle Scholar
  42. 42.
    Kijac A, Li Y, Sligar S, Rienstra C (2007) Magic-angle spinning solid-state NMR spectroscopy of nanodisc-embedded human CYP3A4. Biochemistry 46:13696–13703PubMedCrossRefGoogle Scholar
  43. 43.
    Rahman M, Patching S, Ismat F, Henderson P, Herbert R, Baldwin S, McPherson M (2008) Probing metal ion substrate-binding to the E. coli ZitB exporter in native membranes by solid state NMR. Mol Membr Biol 25:683–690PubMedCrossRefGoogle Scholar
  44. 44.
    Middleton DA, Robins R, Feng X, Levitt MH, Spiers ID, Schwalbe CH, Reid DG, Watts A (1997) The conformation of an inhibitor bound to the gastric proton pump. FEBS Lett 410:269–274PubMedCrossRefGoogle Scholar
  45. 45.
    Luca S, White J, Sohal A, Filippov D, van Boom J, Grisshammer R, Baldus M (2003) The conformation of neurotensin bound to its g protein-coupled receptor. Proc Natl Acad Sci U S A 100:10706–10711PubMedCrossRefGoogle Scholar
  46. 46.
    Lopez J, Shukla A, Reinhart C, Schwalbe H, Michel H, Glaubitz C (2008) The structure of the neuropeptide bradykinin bound to the human g-protein coupled receptor bradykinin b2 as determined by solid-state NMR spectroscopy. Angew Chem Int Ed Engl 47:1668–1671PubMedCrossRefGoogle Scholar
  47. 47.
    Williamson PTF, Roth JF, Haddingham T, Watts A (2000) Expression and purification of recombinant neurotensin in Escherichia coli. Protein Expr Purif 19:271–275PubMedCrossRefGoogle Scholar
  48. 48.
    Lee KH, Kwon YC, Yoo SJ, Kim DM (2010) Ribosomal synthesis and in situ isolation of peptide molecules in a cell-free translation system. Protein Expr Purif 71:16–20PubMedCrossRefGoogle Scholar
  49. 49.
    Watts A, Straus S, Grage S, Kamihira M, Lam Y, Zhao X (2004) Membrane protein structure determination using solid-state NMR. Methods Mol Biol 278:403–473PubMedGoogle Scholar
  50. 50.
    Raleigh D, Levitt M, Griffin R (1988) Rotational resonance in solid state NMR. Chem Phys Lett 146:71–76CrossRefGoogle Scholar
  51. 51.
    Verhoeven A, Williamson PTF, Zimmermann H, Ernst M, Meier BH (2004) Rotational-resonance distance measurements in multi-spin systems. J Magn Reson 168:314–326PubMedCrossRefGoogle Scholar
  52. 52.
    Szeverenyi NM, Sullivan MJ, Maciel GE (1982) Observation of spin exchange by two-dimensional Fourier transform 13C cross polarization-magic-angle spinning. J Magn Reson 47:462–475Google Scholar
  53. 53.
    Gullion T, Schaefer J (1989) Rotational-echo double-resonance NMR. J Magn Reson 81:196–200Google Scholar
  54. 54.
    Grage SL, Watts A, Webb GA (2006) Applications of REDOR for distance measurements in biological solids. Annu Rep NMR Spectrosc 60:191–228CrossRefGoogle Scholar
  55. 55.
    Hing AW, Vega S, Schaefer J (1992) Transferred-echo double-resonance NMR. J Magn Reson 96:205–209Google Scholar
  56. 56.
    Michal CA, Jelinski LW (1997) REDOR 3D: heteronuclear distance measurements in uniformly labeled and natural abundance solids. J Am Chem Soc 119:9059–9060CrossRefGoogle Scholar
  57. 57.
    Hohwy M, Jakobsen HJ, Eden M, Levitt MH, Nielsen NC (1998) Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: a compensated C7 pulse sequence. J Chem Phys 108:2686–2694CrossRefGoogle Scholar
  58. 58.
    Levitt MH (2002) Symmetry-based pulse sequences in magic-angle spinning solid-state NMR. In: Grant DM, Harris RK (eds) Encyclopedia of nuclear magnetic resonance: supplementary volume. Wiley, England, pp 165–196Google Scholar
  59. 59.
    Spooner PJ, Rutherford NG, Watts A, Henderson PJ (1994) NMR observation of substrate in the binding site of an active sugar-H+ symport protein in native membranes. Proc Natl Acad Sci U S A 91:3877–3881PubMedCrossRefGoogle Scholar
  60. 60.
    Spooner P, Veenhoff L, Watts A, Poolman B (1999) Structural information on a membrane transport protein from nuclear magnetic resonance spectroscopy using sequence-selective nitroxide labeling. Biochemistry 38:9634–9639PubMedCrossRefGoogle Scholar
  61. 61.
    Spooner PJ, O’Reilly WJ, Homans SW, Rutherford NG, Henderson PJ, Watts A (1998) Weak substrate binding to transport proteins studied by NMR. Biophys J 75:2794–2800PubMedCrossRefGoogle Scholar
  62. 62.
    Patching S, Brough A, Herbert R, Rajakarier A, Henderson P, Middleton D (2004) Substrate affinities for membrane transport proteins determined by 13C cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy. J Am Chem Soc 126:3072–3080PubMedCrossRefGoogle Scholar
  63. 63.
    Im WB, Blakeman DP, Mendlein J, Sachs G (1984) Inhibition of (H+/K+)-ATPase and H+ accumulation in hog gastric membranes by trifluoperazine, verapamil and 8-(n,n-diethylamino)octyl-3,4,5-trimethoxybenzoate. Biochim Biophys Acta 770:65–72PubMedCrossRefGoogle Scholar
  64. 64.
    Lee YK, Kurur ND, Helmle M, Johannessen OG, Nielsen NC, Levitt MH (1995) Efficient dipolar recoupling in the NMR of rotating solids. A sevenfold symmetric radiofrequency pulse sequence. Chem Phys Lett 242:304–309CrossRefGoogle Scholar
  65. 65.
    Appleyard AN, Herbert RB, Henderson PJ, Watts A, Spooner PJ (2000) Selective NMR observation of inhibitor and sugar binding to the galactose-H+ symport protein GalP, of Escherichia coli. Biochim Biophys Acta 1509:55–64PubMedCrossRefGoogle Scholar
  66. 66.
    Wu X, Zilm KW (1993) Complete spectral editing in CPMAS NMR. J Magn Reson A 102:205–213CrossRefGoogle Scholar
  67. 67.
    Watts A (2002) Direct studies of ligand-receptor interactions and ion channel blocking (review). Mol Membr Biol 19:267–275PubMedCrossRefGoogle Scholar
  68. 68.
    Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223PubMedCrossRefGoogle Scholar
  69. 69.
    Wishart DS, Sykes BD (1994) The 13C chemical-shift index—a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4:171–180PubMedCrossRefGoogle Scholar
  70. 70.
    Wishart DS, Sykes BD, Richards FM (1992) The chemical-shift index—a fast and simple method for the assignment of protein secondary structure through NMR-spectroscopy. Biochemistry 31:1647–1651PubMedCrossRefGoogle Scholar
  71. 71.
    Krabben L, van Rossurn BJ, Jehle S, Bocharov E, Lyukmanova EN, Schulga AA, Arseniev A, Hucho F, Oschkinat H (2009) Loop 3 of short neurotoxin II is an additional interaction site with membrane-bound nicotinic acetylcholine receptor as detected by solid-state NMR spectroscopy. J Mol Biol 390:662–671PubMedCrossRefGoogle Scholar
  72. 72.
    Bocharov EV, Lyukmanova EN, Ermolyuk YS, Schulga AA, Pluzhnikov KA, Dolgikh DA, Kirpichnikov MP, Arseniev AS (2003) Resonance assignment of 13C-15N-labeled snake neurotoxin II from Naja oxiana. Appl Magn Reson 24:247–254CrossRefGoogle Scholar
  73. 73.
    Hong M (1999) Solid-state dipolar inadequate NMR spectroscopy with a large double-quantum spectral width. J Magn Reson 136:86–91PubMedCrossRefGoogle Scholar
  74. 74.
    Heise H, Luca S, de Groot B, Grubmüller H, Baldus M (2005) Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations. Biophys J 89:2113–2120PubMedCrossRefGoogle Scholar
  75. 75.
    Güntert P (2004) Automated NMR structure calculation with CYANA. Methods Mol Biol 278:353–378PubMedGoogle Scholar
  76. 76.
    Gieldon A, Lopez JJ, Glaubitz C, Schwalbe H (2008) Theoretical study of the human bradykinin-bradykinin b2 receptor complex. Chembiochem 9:2487–2497PubMedCrossRefGoogle Scholar
  77. 77.
    Middleton D, Rankin S, Esmann M, Watts A (2000) Structural insights into the binding of cardiac glycosides to the digitalis receptor revealed by solid-state NMR. Proc Natl Acad Sci U S A 97:13602–13607PubMedCrossRefGoogle Scholar
  78. 78.
    Williamson PT, Verhoeven A, Miller KW, Meier BH, Watts A (2007) The conformation of acetylcholine at its target site in the membrane-embedded nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A 104:18031–18036PubMedCrossRefGoogle Scholar
  79. 79.
    Ratnala V, Kiihne S, Buda F, Leurs R, de Groot H, DeGrip W (2007) Solid-state NMR evidence for a protonation switch in the binding pocket of the H1 receptor upon binding of the agonist histamine. J Am Chem Soc 129:867–872PubMedCrossRefGoogle Scholar
  80. 80.
    Lange A, Giller K, Hornig S, Martin-Eauclaire MF, Pongs O, Becker S, Baldus M (2006) Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440:959–962PubMedCrossRefGoogle Scholar
  81. 81.
    Agarwal V, Fink U, Schuldiner S, Reif B (2007) Mas solid-state NMR studies on the multidrug transporter emre. Biochim Biophys Acta 1768:3036–3043PubMedCrossRefGoogle Scholar
  82. 82.
    Lehner I, Basting D, Meyer B, Haase W, Manolikas T, Kaiser C, Karas M, Glaubitz C (2008) The key residue for substrate transport Glu(14) in the EmrE dimer is asymmetric. J Biol Chem 283:3281–3288PubMedCrossRefGoogle Scholar
  83. 83.
    Murphy O, Kovacs F, Sicard E, Thompson L (2001) Site-directed solid-state NMR measurement of a ligand-induced conformational change in the serine bacterial chemoreceptor. Biochemistry 40:1358–1366PubMedCrossRefGoogle Scholar
  84. 84.
    Isaac B, Gallagher G, Balazs Y, Thompson L (2002) Site-directed rotational resonance solid-state NMR distance measurements probe structure and mechanism in the transmembrane domain of the serine bacterial chemoreceptor. Biochemistry 41:3025–3036PubMedCrossRefGoogle Scholar
  85. 85.
    Ullrich SJ, Hellmich UA, Ullrich S, Glaubitz C (2011) Interfacial enzyme kinetics of a membrane bound kinase analyzed by real-time MAS-NMR. Nat Chem Biol 7:263–270. doi: 10.1038/nchembio.543 PubMedCrossRefGoogle Scholar
  86. 86.
    Maly T, Debelouchina G, Bajaj V, Hu K, Joo C, Mak-Jurkauskas M, Sirigiri J, van der Wel P, Herzfeld J, Temkin R, Griffin R (2008) Dynamic nuclear polarization at high magnetic fields. J Chem Phys 128:052211PubMedCrossRefGoogle Scholar
  87. 87.
    Ishii Y, Wickramasinghe NP, Chimon S (2003) A new approach in 1D and 2D 13C high-resolution solid-state NMR spectroscopy of paramagnetic organometallic complexes by very fast magic-angle spinning. J Am Chem Soc 125:3438–3439PubMedCrossRefGoogle Scholar
  88. 88.
    Franks WT, Atreya HS, Szyperski T, Rienstra CM (2010) GFT projection NMR spectroscopy for proteins in the solid state. J Biomol NMR 48:213–223PubMedCrossRefGoogle Scholar
  89. 89.
    Lopez J, Kaiser C, Asami S, Glaubitz C (2009) Higher sensitivity through selective 13C excitation in solid-state NMR spectroscopy. J Am Chem Soc 131:15970–15971PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Andrea Lakatos
    • 1
  • Karsten Mörs
    • 1
  • Clemens Glaubitz
    • 1
    Email author
  1. 1.Centre for Biomolecular Magnetic Resonance, Institute for Biophysical ChemistryGoethe University FrankfurtFrankfurtGermany

Personalised recommendations