Biomolecular Simulations pp 601-616

Part of the Methods in Molecular Biology book series (MIMB, volume 924) | Cite as

Elastic Network Models: Theoretical and Empirical Foundations



Fifteen years ago, Monique Tirion showed that the low-frequency normal modes of a protein are not significantly altered when nonbonded interactions are replaced by Hookean springs, for all atom pairs whose distance is smaller than a given cutoff value. Since then, it has been shown that coarse-grained versions of Tirion’s model are able to provide fair insights on many dynamical properties of biological macromolecules. In this chapter, theoretical tools required for studying these so-called Elastic Network Models are described, focusing on practical issues and, in particular, on possible artifacts. Then, an overview of some typical results that have been obtained by studying such models is given.

Key words

Protein Normal mode analysis Anisotropic network model Gaussian network model Low-frequency modes B-factors Thermal motion Conformational change Functional motion. 


  1. 1.
    Tirion M (1996) Low-amplitude elastic motions in proteins from a single-parameter atomic analysis. Phys Rev Lett 77:1905–1908PubMedCrossRefGoogle Scholar
  2. 2.
    Noguti T, Go N (1982) Collective variable description of small-amplitude conformational fluctuations in a globular protein. Nature 296:776–778PubMedCrossRefGoogle Scholar
  3. 3.
    Go N, Noguti T, Nishikawa T (1983) Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc Natl Acad Sci USA 80:3696–3700PubMedCrossRefGoogle Scholar
  4. 4.
    Levitt M, Sander C, Stern P (1983) Normal-mode dynamics of a protein: bovine pancreatic trypsin inhibitor. Int J Quant Chem 10:181–199Google Scholar
  5. 5.
    Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 2:173–181PubMedCrossRefGoogle Scholar
  6. 6.
    Hinsen K (1998) Analysis of domain motions by approximate normal mode calculations. Proteins 33:417–429PubMedCrossRefGoogle Scholar
  7. 7.
    Micheletti C, Lattanzi G, Maritan A (2002) Elastic properties of proteins: insight on the folding process and evolutionary selection of native structures. J Mol Biol 321:909–921PubMedCrossRefGoogle Scholar
  8. 8.
    Kondrashov D, Van Wynsberghe A, Bannen R, Cui Q, Phillips G (2007) Protein structural variation in computational models and crystallographic data. Structure 15:169–177PubMedCrossRefGoogle Scholar
  9. 9.
    Bahar I, Cui Q (eds) (2005) Normal mode analysis: theory and applications to biological and chemical systems. C&H/CRC Mathematical and Computational Biology Series, vol. 9. CRC press, Boca RatonGoogle Scholar
  10. 10.
    Tama F, Sanejouand YH (2001) Conformational change of proteins arising from normal mode calculations. Prot Engineering 14:1–6CrossRefGoogle Scholar
  11. 11.
    Krebs WG, Alexandrov V, Wilson CA, Echols N, Yu H, Gerstein M (2002) Normal mode analysis of macromolecular motions in a database framework: developing mode concentration as a useful classifying statistic. Proteins 48:682–695PubMedCrossRefGoogle Scholar
  12. 12.
    Delarue M, Sanejouand Y-H (2002) Simplified normal modes analysis of conformational transitions in DNA-dependant polymerases: the elastic network model. J Mol Biol 320:1011–1024PubMedCrossRefGoogle Scholar
  13. 13.
    Valadie H, Lacapere J-J, Sanejouand Y-H, Etchebest C (2003) Dynamical properties of the MscL of Escherichia coli: a normal mode analysis. J Mol Biol 332:657–674PubMedCrossRefGoogle Scholar
  14. 14.
    Suhre K, Sanejouand Y-H (2004) Elnémo: a normal mode server for protein movement analysis and the generation of templates for molecular replacement. Nucl Ac Res 32:W610–W614CrossRefGoogle Scholar
  15. 15.
    Tama F, Brooks III C (2002) The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus. J Mol Biol 318:733–747PubMedCrossRefGoogle Scholar
  16. 16.
    Tama F, Valle M, Frank J, Brooks III CL (2003) Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc Natl Acad Sci USA 100:9319–9323PubMedCrossRefGoogle Scholar
  17. 17.
    Tirion M, ben Avraham D, Lorenz M, Holmes K (1995) Normal modes as refinement parameters for the F-actin model. Biophys J 68:5–12Google Scholar
  18. 18.
    Suhre K, Sanejouand Y-H (2004) On the potential of normal mode analysis for solving difficult molecular replacement problems. Act Cryst D 60:796–799CrossRefGoogle Scholar
  19. 19.
    Delarue M, Dumas P (2004) On the use of low-frequency normal modes to enforce collective movements in refining macromolecular structural models. Proc Natl Acad Sci USA 101:6957–6962PubMedCrossRefGoogle Scholar
  20. 20.
    Tama F, Miyashita O, Brooks III CL (2004) Flexible multi-scale fitting of atomic structures into low-resolution electron density maps with elastic network normal mode analysis. J Mol Biol 337:985–999PubMedCrossRefGoogle Scholar
  21. 21.
    Hinsen K, Reuter N, Navaza J, Stokes DL, Lacapere JJ (2005) Normal mode-base fitting of atomic structure into electron density maps: application to sarcoplasmic reticulum Ca-ATPase. Biophys J 88:818–827PubMedCrossRefGoogle Scholar
  22. 22.
    Mitra K, Schaffitzel C, Shaikh T, Tama F, Jenni S, Brooks 3rd C, Ban N, Frank J (2005) Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature 438:318–324PubMedCrossRefGoogle Scholar
  23. 23.
    Suhre K, Navaza J, Sanejouand Y-H (2006) Norma: a tool for flexible fitting of high resolution protein structures into low resolution electron microscopy derived density maps. Act Cryst D 62:1098–1100CrossRefGoogle Scholar
  24. 24.
    Levitt M, Warshel A (1975) Computer simulation of protein folding. Nature 253:694–698PubMedCrossRefGoogle Scholar
  25. 25.
    Taketomi H, Ueda Y, Go N (1975) Studies on protein folding, unfolding and fluctuations by computer simulation. I. The effect of specific amino acid sequence represented by specific inter-unit interactions. Int J Pept Prot Res 7:445–459Google Scholar
  26. 26.
    Shakhnovich E, Gutin A (1990) Enumeration of all compact conformations of copolymers with random sequence of links. J Chem Phys 93:5967CrossRefGoogle Scholar
  27. 27.
    Li H, Tang C, Wingreen N (1997) Nature of driving force for protein folding: a result from analyzing the statistical potential. Phys Rev lett 79:765–768CrossRefGoogle Scholar
  28. 28.
    Li H, Helling R, Tang C, Wingreen N (1996) Emergence of preferred structures in a simple model of protein folding. Science 273:666–669PubMedCrossRefGoogle Scholar
  29. 29.
    Trinquier G, Sanejouand YH (1999) New protein-like properties of cubic lattice models. Phys Rev E 59:942–946CrossRefGoogle Scholar
  30. 30.
    He Y, Chen Y, Alexander P, Bryan P, Orban J (2008) NMR structures of two designed proteins with high sequence identity but different fold and function. Proc Natl Acad Sci USA 105:14412PubMedCrossRefGoogle Scholar
  31. 31.
    Goldstein H (1950) Classical mechanics. Addison-Wesley, Reading, MAGoogle Scholar
  32. 32.
    Wilson E, Decius J, Cross P (1955) Cross molecular vibrations. McGraw-Hill, New YorkGoogle Scholar
  33. 33.
    Sanejouand Y-H (1990) Ph.D. Thesis. Université de Paris XI, Orsay, FranceGoogle Scholar
  34. 34.
    Levy R, Perahia D, Karplus M (1982) Molecular dynamics of an alpha-helical polypeptide: temperature dependance and deviation from harmonic behavior. Proc Natl Acad Sci USA 79:1346–1350PubMedCrossRefGoogle Scholar
  35. 35.
    Elber R, Karplus M (1987) Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin. Science 235:318–321PubMedCrossRefGoogle Scholar
  36. 36.
    Brooks B, Karplus M (1983) Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci USA 80:6571–6575PubMedCrossRefGoogle Scholar
  37. 37.
    Lazaridis T, Karplus M (1999) Effective energy function for proteins in solution. Proteins 35:133–152PubMedCrossRefGoogle Scholar
  38. 38.
    Haliloglu T, Bahar I, Erman B (1997) Gaussian dynamics of folded proteins. Phys Rev lett 79:3090–3093CrossRefGoogle Scholar
  39. 39.
    Atilgan A, Durell S, Jernigan R, Demirel M, Keskin O, Bahar I (2001) Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J 80:505–515PubMedCrossRefGoogle Scholar
  40. 40.
    Hinsen K, Kneller G (1999) A simplified force field for describing vibrational protein dynamics over the whole frequency range. J Chem Phys 111:10766CrossRefGoogle Scholar
  41. 41.
    Kundu S, Melton J, Sorensen D, Phillips Jr G (2002) Dynamics of proteins in crystals: comparison of experiment with simple models. Biophys J 83:723–732PubMedCrossRefGoogle Scholar
  42. 42.
    Nicolay S, Sanejouand Y-H (2006) Functional modes of proteins are among the most robust. Phys Rev Lett 96:078104PubMedCrossRefGoogle Scholar
  43. 43.
    Miyazawa S, Jernigan R (1985) Estimation of effective inter-residue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18:534–552CrossRefGoogle Scholar
  44. 44.
    Miyazawa S, Jernigan R (1996) Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term for simulation and threading. J Mol Biol 256:623–644PubMedCrossRefGoogle Scholar
  45. 45.
    Tama F (2000) Ph.D. Thesis. Université Paul Sabatier, Toulouse, FranceGoogle Scholar
  46. 46.
    Durand P, Trinquier G, Sanejouand YH (1994) A new approach for determining low-frequency normal modes in macromolecules. Biopolymers 34:759–771CrossRefGoogle Scholar
  47. 47.
    Tama F, Gadea F-X, Marques O, Sanejouand Y-H (2000) Building-block approach for determining low-frequency normal modes of macromolecules. Proteins 41:1–7PubMedCrossRefGoogle Scholar
  48. 48.
    Kuriyan J, Weis W (1991) Rigid protein motion as a model for crystallographic temperature factors. Proc Natl Acad Sci USA 88:2773PubMedCrossRefGoogle Scholar
  49. 49.
    Simonson T, Perahia D (1992) Normal modes of symmetric protein assemblies. Application to the tobacco mosaic virus protein disk. Biophys J 61:410–427Google Scholar
  50. 50.
    Hinsen K (2008) Structural flexibility in proteins: impact of the crystal environment. Bioinformatics 24:521PubMedCrossRefGoogle Scholar
  51. 51.
    Riccardi D, Cui Q, Phillips Jr G (2009) Application of elastic network models to proteins in the crystalline state. Biophys J 96:464–475PubMedCrossRefGoogle Scholar
  52. 52.
    Juanico B, Sanejouand Y-H, Piazza F, De Los Rios P (2007) Discrete breathers in nonlinear network models of proteins. Phys Rev Lett 99:238104PubMedCrossRefGoogle Scholar
  53. 53.
    Sacquin-Mora S, Laforet E, Lavery R (2007) Locating the active sites of enzymes using mechanical properties. Proteins 67:350–359PubMedCrossRefGoogle Scholar
  54. 54.
    Kraulis P (1991) Molscript: a program to produce both detailed and schematic plots of protein structures. J Appl Cryst 24:946–950CrossRefGoogle Scholar
  55. 55.
    Marques O, Sanejouand Y-H (1995) Hinge-bending motion in citrate synthase arising from normal mode calculations. Proteins 23:557–560PubMedCrossRefGoogle Scholar
  56. 56.
    Lu M, Ma J (2005) The role of shape in determining molecular motions. Biophys J 89: 2395–2401PubMedCrossRefGoogle Scholar
  57. 57.
    Tama F, Brooks C (2006) Symmetry, form, and shape: guiding principles for robustness in macromolecular machines. Annu Rev Biophys Biomol Struct 35:115–133PubMedCrossRefGoogle Scholar
  58. 58.
    McCammon JA, Gelin BR, Karplus M, Wolynes P (1976) The hinge-bending mode in lysozyme. Nature 262:325–326PubMedCrossRefGoogle Scholar
  59. 59.
    Harrison R (1984) Variational calculation of the normal modes of a large macromolecules: methods and some initial results. Biopolymers 23:2943–2949PubMedCrossRefGoogle Scholar
  60. 60.
    Perahia D, Mouawad L (1995) Computation of low-frequency normal modes in macromolecules: improvements to the method of diagonalization in a mixed basis and application to hemoglobin. Comput Chem 19:241–246PubMedCrossRefGoogle Scholar
  61. 61.
    Branden C, Tooze J et al (1991) Introduction to protein structure. Garland Publishing, New YorkGoogle Scholar
  62. 62.
    Gerstein M, Krebs W (1998) A database of macromolecular motions Nucl Acid Res 26:4280–4290Google Scholar
  63. 63.
    Diamond R (1990) On the use of normal modes in thermal parameter refinement: theory and application to the bovine pancreatic trypsin inhibitor. Acta Cryst A 46:425–435CrossRefGoogle Scholar
  64. 64.
    Kidera A, Go N (1990) Refinement of protein dynamic structure: normal mode refinement. Proc Natl Acad Sci USA 87:3718–3722PubMedCrossRefGoogle Scholar
  65. 65.
    Sanejouand Y-H (1996) Normal-mode analysis suggests important flexibility between the two N-terminal domains of CD4 and supports the hypothesis of a conformational change in CD4 upon HIV binding. Prot Eng 9:671–677CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.University of NantesNantesFrance

Personalised recommendations