Two-Photon Imaging of Population Activity with Genetically Encoded Calcium Indicators in Living Flies

  • Robert A. A. Campbell
  • Kyle S. Honegger
  • Eyal Gruntman
  • Glenn C. TurnerEmail author
Part of the Neuromethods book series (NM, volume 72)


Genetically encoded calcium indicators make it possible to track neural activity on a population-wide level. Here we describe a preparation that enables two-photon imaging of neural activity in an essentially intact fly. We present strategies to minimize motion of the brain, both in preparation technique and in apparatus design. We discuss key variables for reducing the problems of photobleaching and phototoxicity in order to collect high quality imaging data. Finally, we discuss approaches to analyze the large quantities of data that can now be readily acquired using the latest generation of genetically encoded calcium indicators.

Key words

Calcium imaging Two-photon microscopy GCaMP Mushroom body Drosophila Olfaction Memory 



K.S.H. is supported by the Crick-Clay fellowship from the Watson School of Biological Sciences and predoctoral training grant 5T32GM065094 from the National Institute of General Medical Sciences. E.G. is supported by the Elisabeth Sloan Livingston fellowship from the Watson School of Biological Sciences. This work was funded by NIH grant R01 DC010403-01A1.


  1. 1.
    Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723PubMedCrossRefGoogle Scholar
  2. 2.
    Su C-Y, Menuz K, Carlson JR (2009) Olfactory perception: receptors, cells, and circuits. Cell 139:45–59PubMedCrossRefGoogle Scholar
  3. 3.
    Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69:291–316PubMedCrossRefGoogle Scholar
  4. 4.
    Reiff DF, Ihring A, Guerrero G, Isacoff EY, Joesch M, Nakai J, Borst A (2005) In vivo performance of genetically encoded indicators of neural activity in flies. J Neurosci 25:4766–4778PubMedCrossRefGoogle Scholar
  5. 5.
    Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881PubMedCrossRefGoogle Scholar
  6. 6.
    Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887PubMedCrossRefGoogle Scholar
  7. 7.
    Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB, Stein V, Hendel T, Reiff DF, Levelt C, Borst A, Bonhoeffer T, Hübener M, Griesbeck O (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5:805–811PubMedCrossRefGoogle Scholar
  8. 8.
    Brand AH, Perrion N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  9. 9.
    Lai S-L, Lee T (2006) Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9:703–709PubMedCrossRefGoogle Scholar
  10. 10.
    Potter CJ, Tasic B, Russler EV, Liang L, Luo L (2010) The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141:536–548PubMedCrossRefGoogle Scholar
  11. 11.
    Mank M, Griesbeck O (2008) Genetically encoded calcium indicators. Chem Rev 108:1550–1564PubMedCrossRefGoogle Scholar
  12. 12.
    Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA 100:7319–7324PubMedCrossRefGoogle Scholar
  13. 13.
    Davis RL (2005) Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci 28:275–302PubMedCrossRefGoogle Scholar
  14. 14.
    Keene A, Waddell S (2007) Drosophila olfactory memory: single genes to complex neural circuits. Nat Rev Neurosci 8:341–354PubMedCrossRefGoogle Scholar
  15. 15.
    Perez-Orive J, Mazor O, Turner GC, Cassenaer S, Wilson RI, Laurent G (2002) Oscillations and sparsening of odor representations in the mushroom body. Science 297:359–365PubMedCrossRefGoogle Scholar
  16. 16.
    Turner GC, Bazhenov M, Laurent G (2008) Olfactory representations by Drosophila mushroom body neurons. J Neurophysiol 99:734–746PubMedCrossRefGoogle Scholar
  17. 17.
    Kanerva P (1988) Sparse distributed memory. MIT Press, Cambridge, MAGoogle Scholar
  18. 18.
    Marr D (1969) A theory of cerebellar cortex. J Physiol (Lond) 202:437–470Google Scholar
  19. 19.
    Yuste R (2005) Imaging in neuroscience and development: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  20. 20.
    Grewe BF, Helmchen F (2009) Optical probing of neuronal ensemble activity. Curr Opin Neurobiol 19:520–529PubMedCrossRefGoogle Scholar
  21. 21.
    Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940PubMedCrossRefGoogle Scholar
  22. 22.
    Oertner TG, Single S, Borst A (1999) Separation of voltage- and ligand-gated calcium influx in locust neurons by optical imaging. Neurosci Lett 274:95–98PubMedCrossRefGoogle Scholar
  23. 23.
    Single S, Borst A (2002) Different mechanisms of calcium entry within different dendritic compartments. J Neurophysiol 87:1616–1624PubMedGoogle Scholar
  24. 24.
    Wang Y, Wright NJ, Guo H, Xie Z, Svoboda K, Malinow R, Smith DP, Zhong Y (2001) Genetic manipulation of the odor-evoked distributed neural activity in the Drosophila mushroom body. Neuron 29:267–276PubMedCrossRefGoogle Scholar
  25. 25.
    Wang Y, Guo H-F, Pologruto TA, Hannan F, Hakker I, Svoboda K, Zhong Y (2004) Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2+ imaging. J Neurosci 24:6507–6514PubMedCrossRefGoogle Scholar
  26. 26.
    Jayaraman V, Laurent G (2007) Evaluating a genetically encoded optical sensor of neural activity using electrophysiology in intact adult fruit flies. Front Neural Circ 1:3Google Scholar
  27. 27.
    Yaksi E, Friedrich RW (2006) Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging. Nat Methods 3:377–383PubMedCrossRefGoogle Scholar
  28. 28.
    Murthy M, Turner GC (2010) In vivo whole-cell recordings in the Drosophila brain. In: Zhang B, Waddell S, Freeman M (eds) Drosophila neurobiology methods: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  29. 29.
    Wang JW, Wong AM, Flores J, Vosshall LB, Axel R (2003) Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112:271–282PubMedCrossRefGoogle Scholar
  30. 30.
    Bate M (1993) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  31. 31.
    Seelig JD, Chiappe ME, Lott GK, Dutta A, Osborne JE, Reiser MB, Jayaraman V (2010) Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior. Nat Methods 7:535–540PubMedCrossRefGoogle Scholar
  32. 32.
    Guizar-Sicairos M, Thurman ST, Fienup JR (2008) Efficient subpixel image registration algorithms. Opt Lett 33:156–158PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Robert A. A. Campbell
    • 1
  • Kyle S. Honegger
    • 2
  • Eyal Gruntman
    • 2
  • Glenn C. Turner
    • 2
    Email author
  1. 1.Cold Spring Harbor LaboratoryCold Spring HarborUSA
  2. 2.Cold Spring Harbor Laboratory, Watson School of Biological SciencesCold Spring HarborUSA

Personalised recommendations