Helicobacter Species pp 11-15

Part of the Methods in Molecular Biology book series (MIMB, volume 921)

Perspectives on Methodology for In Vitro Culture of Helicobacter pylori

Abstract

Over the past 25 years, a variety of methods have been developed for culture of Helicobacter pylori in vitro. H. pylori is a capnophilic and microaerophilic organism that is typically cultured using complex culture media. Analysis of H. pylori growth in chemically defined media has provided insight into the nutritional requirements, physiology, and metabolic capacities of this organism.

Key words

Helicobacter pylori Defined medium Capnophilic Microaerophilic Nutritional ­requirements Nutrient acquisition 

References

  1. 1.
    Marshall BJ, Warren JR (1984) Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1:1311–1315PubMedCrossRefGoogle Scholar
  2. 2.
    Ndip RN, MacKay WG, Farthing MJ, Weaver LT (2003) Culturing Helicobacter pylori from clinical specimens: review of microbiologic methods. J Pediatr Gastroenterol Nutr 36:616–622PubMedCrossRefGoogle Scholar
  3. 3.
    Olivieri R, Bugnoli M, Armellini D, Bianciardi S, Rappuoli R, Bayeli PF, Abate L, Esposito E, De Aziz GLJ et al (1993) Growth of Helicobacter pylori in media containing cyclodextrins. J Clin Microbiol 31:160–162PubMedGoogle Scholar
  4. 4.
    Westblom TU, Madan E, Midkiff BR (1991) Egg yolk emulsion agar, a new medium for the cultivation of Helicobacter pylori. J Clin Microbiol 29:819–821PubMedGoogle Scholar
  5. 5.
    Bury-Mone S, Kaakoush NO, Asencio C, Megraud F, Thibonnier M, De Reuse H, Mendz GL (2006) Is Helicobacter pylori a true microaerophile? Helicobacter 11:296–303PubMedCrossRefGoogle Scholar
  6. 6.
    Kelly DJ (2001) The physiology and metabolism of and Campylobacter jejuni and Helico­bacter pylori. Symp Ser Soc Appl Microbiol 30:16S–24SGoogle Scholar
  7. 7.
    St Maurice M, Cremades N, Croxen MA, Sisson G, Sancho J, Hoffman PS (2007) Flavodoxin:quinone reductase (FqrB): a redox partner of pyruvate:ferredoxin oxidoreductase that reversibly couples pyruvate oxidation to NADPH production in Helicobacter pylori and Campylobacter jejuni. J Bacteriol 189:4764–4773PubMedCrossRefGoogle Scholar
  8. 8.
    Bury-Mone S, Mendz GL, Ball GE, Thibonnier M, Stingl K, Ecobichon C, Ave P, Huerre M, Labigne A, Thiberge JM, De Reuse H (2008) Roles of alpha and beta carbonic anhydrases of Helicobacter pylori in the urease-dependent response to acidity and in colonization of the murine gastric mucosa. Infect Immun 76:497–509PubMedCrossRefGoogle Scholar
  9. 9.
    Xia HX, Keane CT, O’Morain CA (1994) Culture of Helicobacter pylori under aerobic conditions on solid media. Eur J Clin Microbiol Infect Dis 13:406–409PubMedCrossRefGoogle Scholar
  10. 10.
    Cederbrant G, Kahlmeter G, Ljungh A (1992) Proposed mechanism for metronidazole resistance in Helicobacter pylori. J Antimicrob Chemother 29:115–120PubMedCrossRefGoogle Scholar
  11. 11.
    Cottet S, Corthesy-Theulaz I, Spertini F, Corthesy B (2002) Microaerophilic conditions permit to mimic in vitro events occurring during in vivo Helicobacter pylori infection and to identify Rho/Ras-associated proteins in cellular signaling. J Biol Chem 277:33978–33986PubMedCrossRefGoogle Scholar
  12. 12.
    Buck GE, Smith JS (1987) Medium supplementation for growth of Campylobacter pyloridis. J Clin Microbiol 25:597–599PubMedGoogle Scholar
  13. 13.
    Hazell SL, Graham DY (1990) Unsaturated fatty acids and viability of Helicobacter (Campylobacter) pylori. J Clin Microbiol 28:1060–1061PubMedGoogle Scholar
  14. 14.
    Khulusi S, Ahmed HA, Patel P, Mendall MA, Northfield TC (1995) The effects of unsaturated fatty acids on Helicobacter pylori in vitro. J Med Microbiol 42:276–282PubMedCrossRefGoogle Scholar
  15. 15.
    Marchini A, Massari P, Manetti R, Olivieri R (1994) Optimized conditions for the fermentation of Helicobacter pylori and production of vacuolating cytotoxin. FEMS Microbiol Lett 124:55–59PubMedCrossRefGoogle Scholar
  16. 16.
    Deshpande M, Calenoff E, Daniels L (1995) Rapid large-scale growth of Helicobacter pylori in flasks and fermentors. Appl Environ Microbiol 61:2431–2435PubMedGoogle Scholar
  17. 17.
    Reynolds DJ, Penn CW (1994) Characteristics of Helicobacter pylori growth in a defined medium and determination of its amino acid requirements. Microbiology 140:2649–2656PubMedCrossRefGoogle Scholar
  18. 18.
    Nedenskov P (1994) Nutritional requirements for growth of Helicobacter pylori. Appl Environ Microbiol 60:3450–3453PubMedGoogle Scholar
  19. 19.
    Albertson N, Wenngren I, Sjostrom JE (1998) Growth and survival of Helicobacter pylori in defined medium and susceptibility to Brij 78. J Clin Microbiol 36:1232–1235PubMedGoogle Scholar
  20. 20.
    Testerman TL, McGee DJ, Mobley HL (2001) Helicobacter pylori growth and urease detection in the chemically defined medium Ham’s F-12 nutrient mixture. J Clin Microbiol 39:3842–3850PubMedCrossRefGoogle Scholar
  21. 21.
    Testerman TL, Conn PB, Mobley HL, McGee DJ (2006) Nutritional requirements and antibiotic resistance patterns of Helicobacter species in chemically defined media. J Clin Microbiol 44:1650–1658PubMedCrossRefGoogle Scholar
  22. 22.
    Weinberg MV, Maier RJ (2007) Peptide transport in Helicobacter pylori: roles of dpp and opp systems and evidence for additional peptide transporters. J Bacteriol 189:3392–3402PubMedCrossRefGoogle Scholar
  23. 23.
    Doherty NC, Tobias A, Watson S, Atherton JC (2009) The effect of the human gut-signalling hormone, norepinephrine, on the growth of the gastric pathogen Helicobacter pylori. Helicobacter 14:223–230PubMedCrossRefGoogle Scholar
  24. 24.
    Schraw W, McClain MS, Cover TL (1999) Kinetics and mechanisms of extracellular protein release by Helicobacter pylori. Infect Immun 67:5247–5252PubMedGoogle Scholar
  25. 25.
    Smith TG, Lim JM, Weinberg MV, Wells L, Hoover TR (2007) Direct analysis of the extracellular proteome from two strains of Helicobacter pylori. Proteomics 7:2240–2245PubMedCrossRefGoogle Scholar
  26. 26.
    Schilling CH, Covert MW, Famili I, Church GM, Edwards JS, Palsson BO (2002) Genome-scale metabolic model of Helicobacter pylori 26695. J Bacteriol 184:4582–4593PubMedCrossRefGoogle Scholar
  27. 27.
    Doig P, de Jonge BL, Alm RA, Brown ED, Uria-Nickelsen M, Noonan B, Mills SD, Tummino P, Carmel G, Guild BC, Moir DT, Vovis GF, Trust TJ (1999) Helicobacter pylori physiology predicted from genomic comparison of two strains. Microbiol Mol Biol Rev 63:675–707PubMedGoogle Scholar
  28. 28.
    Kavermann H, Burns BP, Angermuller K, Odenbreit S, Fischer W, Melchers K, Haas R (2003) Identification and characterization of Helicobacter pylori genes essential for gastric colonization. J Exp Med 197:813–822PubMedCrossRefGoogle Scholar
  29. 29.
    Eaton KA, Brooks CL, Morgan DR, Krakowka S (1991) Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect Immun 59:2470–2475PubMedGoogle Scholar
  30. 30.
    Tsuda M, Karita M, Morshed MG, Okita K, Nakazawa T (1994) A urease-negative mutant of Helicobacter pylori constructed by allelic exchange mutagenesis lacks the ability to colonize the nude mouse stomach. Infect Immun 62:3586–3589PubMedGoogle Scholar
  31. 31.
    Senkovich O, Ceaser S, McGee DJ, Testerman TL (2010) Unique host iron utilization mechanisms of Helicobacter pylori revealed with iron-deficient chemically defined media. Infect Immun 78:1841–1849PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Medicine and Department of Pathology, Microbiology and ImmunologyVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations